Serverless 架构下的服务优雅下线实践

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 应用发布、服务升级一直是一个让开发和运维同学既兴奋又担心的事情。兴奋的是有新功能上线,自己的产品可以对用户提供更多的能力和价值;担心的是上线的过程会不会出现意外情况影响业务的稳定性。确实,在应用发布和服务升级时,线上问题出现的可能性更高,本文我们将结合 Serverless 应用引擎(以下简称 SAE)就 Serverless 架构下,讨论如何保障上线过程中服务的优雅下线。

应用发布、服务升级一直是一个让开发和运维同学既兴奋又担心的事情。

兴奋的是有新功能上线,自己的产品可以对用户提供更多的能力和价值;担心的是上线的过程会不会出现意外情况影响业务的稳定性。确实,在应用发布和服务升级时,线上问题出现的可能性更高,本文我们将结合 Serverless 应用引擎(以下简称 SAE)就 Serverless 架构下,讨论如何保障上线过程中服务的优雅下线。

在平时的发布过程中,我们是否遇到过以下问题:

  • 发布过程中,出现正在执行的请求被中断?
  • 下游服务节点已经下线,上游依然继续调用已经下线的节点导致请求报错,进而导致业务异常?
  • 发布过程造成数据不一致,需要对脏数据进行修复。

有时候,我们把发版安排在凌晨两三点,赶在业务流量比较小的时候,心惊胆颤、睡眠不足、苦不可言。那如何解决上面的问题,如何保证应用发布过程稳定、高效,保证业务无损呢?首先,我们来梳理下造成这些问题的原因。

场景分析

1.png

这个图描述了我们使用微服务架构开发应用的一个常见的场景,先看下这个场景的服务调用关系:

  • 服务 B、C 把服务注册到服务注册中心,服务 A、B 从注册中心发现依赖的服务。
  • 业务流量从负载均衡路由到服务 A,在 SLB 上配置服务 A 实例的健康检查,当服务 A 有实例停机的时候,相应的实例从 SLB 摘掉;服务 A 调用服务 B,服务B再调用服务C。

从图中,可以看到有两类流量,南北向流量(即通过 SLB 转发到后端服务器的业务流量,如业务流量->SLB->A的调用链路)和东西向流量(借助于服务注册中心服务发现调用的流量,如服务A->服务B的调用链路)

针对这两类流量我们分别进行分析。先来分析下在这种架构下南北向流量存在的问题,当服务 A 发布的时候,服务A1 实例停机后,SLB 根据健康检查探测到实例 A1 下线,然后把实例从 SLB 摘掉,实例 A1 依赖 SLB 的健康检查从 SLB 上摘掉,一般需要几秒到十几秒的时间,在这个过程中,如果 SLB 有持续的流量打入,就会造成一些请求继续路由到实例 A1,导致请求失败。

那如何保证经过SLB的业务流量不报错?我们看下 SAE 是如何做到的。

南北向流量优雅下线方案

2.png

上面提到过,请求失败的原因在于后端服务实例先停止掉,然后才从 SLB 摘掉,那我们是不是可以先从 SLB 摘掉服务实例,然后在对实例进行升级呢?

按照这个思路,SAE 基于 K8s Service 的能力给出了一种方案,当用户在通过 SAE 为应用绑定 SLB 时,SAE 会在集群中创建一个 Service 资源,并把应用的实例和 Service 关联,CCM 组件会负责 SLB 的购买、SLB 虚拟服务器组的创建,并且把应用实例关联的 ENI 网卡添加到虚拟服务器组中,从而用户可以通过 SLB 来访问应用实例;当应用发布时,CCM 组件会先把实例对应的 ENI 从虚拟服务器组中摘除,然后再对实例进行升级,从而保证了流量不丢失。

东西向流量优雅下线方案

在讨论完南北向流量的解决方案后,我们再看下东西向流量, 传统的发布流程中,服务提供者停止再启动,服务消费者感知到服务提供者节点停止的流程如下:

3.png

  • 服务发布前,消费者根据负载均衡规则调用服务提供者,业务正常。
  • 服务提供者 B 需要发布新版本,先对其中的一个节点进行操作,首先是停止 Java 进程。
  • 服务停止过程,又分为主动注销和被动注销,主动注销是准实时的,被动注销的时间由不同的注册中心决定,最差的情况会需要 1 分钟。
  • 如果应用是正常停止,Spring Cloud 和 Dubbo 框架的 Shutdown Hook 能正常被执行,这一步的耗时可以忽略不计。
  • 如果应用是非正常停止,比如直接使用 kill -9 停止,或者 Docker 镜像构建的时候 Java 应用不是 1 号进程且没有把 kill 信号传递给应用。那么服务提供者不会主动去注销服务节点,而是在超过一段时间后由于心跳超时而被动地被注册中心摘除。
  • 服务注册中心通知消费者,其中的一个服务提供者节点已下线。包含推送和轮询两种方式,推送可以认为是准实时的,轮询的耗时由服务消费者轮询间隔决定,最差的情况下需要 1 分钟。
  • 服务消费者刷新服务列表,感知到服务提供者已经下线了一个节点,这一步对于 Dubbo 框架来说不存在,但是 Spring Cloud 的负载均衡组件 Ribbon 默认的刷新时间是 30 秒 ,最差情况下需要耗时 30 秒。
  • 服务消费者不再调用已经下线的节点。

从第 2 步到第 6 步的过程中,Eureka 在最差的情况下需要耗时 2 分钟,Nacos 在最差的情况下需要耗时 50 秒。在这段时间内,请求都有可能出现问题,所以发布时会出现各种报错。

经过上面的分析,我们看,在传统发布流程中,客户端有一个服务调用报错期,原因就是客户端没有及时感知到服务端下线的实例造成的,这种情况主要是因为服务提供者借助注册中心通知消费者来更新服务提供者列表造成的,那能不能绕过注册中心,服务提供者直接通知服务消费者呢?答案是肯定的,SAE 主要做了两件事情。
4.png

  • 服务提供者应用在发布前后主动向注册中心注销应用,并将应用标记为已下线的状态;将原来的停止进程阶段 注销服务变成了 prestop 阶段注销服务。
  • 在接收到服务消费者请求时,首先会正常处理本次调用,并通知服务消费者此节点已下线,服务消费者会立即从调用列表删除此节点;在这之后,服务消费者不再调用已经下线的节点。这是将原来的依赖于 注册中心推送,变成了服务提供者直接通知消费者从调用列表中摘除自己。

通过上面这个方案,就使得下线感知的时间大大减短,从原来的分钟级别做到准实时,确保您的应用在下线时能做到业务无损。

分批发布和灰度发布

上面介绍的是 SAE 在处理优雅下线方面的一些能力,在应用发布的过程中,只有实例的优雅下线是不够的,需要有一套配套的发布策略,保证我们新业务是可用的,SAE 提供了分批发布和灰度发布的能力,可以使得应用的发布过程更加省心省力;

我们先介绍下灰度发布,某应用包含10个应用实例,每个应用实例的部署版本为Ver.1版本,现需将每个应用实例升级为Ver.2版本。
5.png

从图中可以看出,在发布的过程中先灰度2台实例,在确认业务正常后,再分批发布剩余的实例,发布的过程中始终有实例处于运行状态,实例升级过程中依照上面的方案,每个实例都有优雅下线的过程,这就保证了业务无损。

再来看下分批发布,分批发布支持手动、自动分批;还是上面的10个应用实例,假设将所有应用实例分3批进行部署,根据分批发布策略,该发布流程如图所示,就不再具体介绍了。
6.png

如果您想体验 Serverless 架构下在微服务应用的优雅下线、分批发布和灰度发布方面的能力,欢迎您登陆 SAE 的 控制台 >>

【更多精彩】

1.中间件爆款一折起,还有阿里巴巴十年最佳实践深度解密,点击马上了解https://www.aliyun.com/activity/daily/commercial?spm=5176.20960838.0.0.6a54305etoEn4D

2.【填问卷领淘公仔】点击马上填写问卷:
https://survey.aliyun.com/apps/zhiliao/YmW95Gk8bU

【加入行业实战交流钉钉群】

阿里云专门成立了“互联网架构升级实战课”钉钉群,每周邀请一位阿里云专家在群内进行行业最佳实践直播,每天分享行业前沿干货,钉钉扫码马上加入。
image.png

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
2月前
|
运维 监控 Cloud Native
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
国诚投顾携手阿里云,依托Serverless架构实现技术全面升级,构建高弹性、智能化技术底座,提升业务稳定性与运行效率。通过云原生API网关、微服务治理与智能监控,实现流量精细化管理与系统可观测性增强,打造安全、敏捷的智能投顾平台,助力行业数字化变革。
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
|
2月前
|
运维 监控 Cloud Native
【云故事探索】NO.17:国诚投顾的云原生 Serverless 实践
通过与阿里云深度合作,国诚投顾完成了从传统 ECS 架构向云原生 Serverless 架构的全面转型。新的技术架构不仅解决了原有系统在稳定性、弹性、运维效率等方面的痛点,还在成本控制、API 治理、可观测性、DevOps 自动化等方面实现了全方位升级。
|
6月前
|
数据采集 运维 Serverless
云函数采集架构:Serverless模式下的动态IP与冷启动优化
本文探讨了在Serverless架构中使用云函数进行网页数据采集的挑战与解决方案。针对动态IP、冷启动及目标网站反爬策略等问题,提出了动态代理IP、请求头优化、云函数预热及容错设计等方法。通过网易云音乐歌曲信息采集案例,展示了如何结合Python代码实现高效的数据抓取,包括搜索、歌词与评论的获取。此方案不仅解决了传统采集方式在Serverless环境下的局限,还提升了系统的稳定性和性能。
182 0
|
6月前
|
存储 运维 Serverless
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
569 69
|
5月前
|
数据采集 运维 监控
Serverless爬虫架构揭秘:动态IP、冷启动与成本优化
随着互联网数据采集需求的增长,传统爬虫架构因固定IP易封禁、资源浪费及扩展性差等问题逐渐显现。本文提出基于Serverless与代理IP技术的新一代爬虫方案,通过动态轮换IP、弹性调度任务等特性,显著提升启动效率、降低成本并增强并发能力。架构图与代码示例详细展示了其工作原理,性能对比数据显示采集成功率从71%提升至92%。行业案例表明,该方案在电商情报与价格对比平台中效果显著,未来有望成为主流趋势。
147 0
Serverless爬虫架构揭秘:动态IP、冷启动与成本优化
|
6月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
368 12
|
27天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
266 12
|
6月前
|
SQL 分布式计算 Serverless
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
602 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
|
4月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
243 0

热门文章

最新文章

相关产品

  • 函数计算