Transformers 4.37 中文文档(五十五)(9)

简介: Transformers 4.37 中文文档(五十五)

Transformers 4.37 中文文档(五十五)(8)https://developer.aliyun.com/article/1565398


__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)—词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)—避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 对于未被masked的标记,值为 1,
  • 对于被masked的标记,值为 0。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)—段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]`:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(RobertaConfig)和输入的各种元素。

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForTokenClassification.from_pretrained("roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForQuestionAnswering

class transformers.FlaxRobertaForQuestionAnswering

< source >

( config: RobertaConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (RobertaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

具有用于提取问答任务的跨度分类头部的 Roberta 模型,例如 SQuAD(在隐藏状态输出之上的线性层,用于计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

该模型还是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,该模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:
  • 1 表示未被屏蔽的标记,
  • 0 表示被屏蔽的标记。
  • 什么是注意力掩码?
  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在 [0, 1] 中:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 用于使注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1] 中:
  • 1 表示头部未被屏蔽,
  • 0 表示头部被屏蔽。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaConfig)和输入的各种元素。

  • start_logits (jnp.ndarray of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).
  • end_logits (jnp.ndarray of shape (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例,而不是这个,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForQuestionAnswering.from_pretrained("roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

ization-vmap)

__call__

<来源>

( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:
  • 1 表示未被屏蔽的标记,
  • 0 表示被屏蔽的标记。
  • 什么是注意力掩码?
  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 指示输入的第一部分和第二部分的段标记索引。索引选择在 [0, 1] 中:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 用于使注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1] 中:
  • 1 表示头部未被屏蔽,
  • 0 表示头部被屏蔽。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(RobertaConfig)和输入的各种元素。

  • start_logits (jnp.ndarray of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).
  • end_logits (jnp.ndarray of shape (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxRobertaPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例,而不是这个,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxRobertaForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForQuestionAnswering.from_pretrained("roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits


相关文章
|
5月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(5)
Transformers 4.37 中文文档(二十九)
57 11
|
5月前
|
PyTorch 算法框架/工具 索引
Transformers 4.37 中文文档(四十二)(6)
Transformers 4.37 中文文档(四十二)
40 5
|
5月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(四十二)(5)
Transformers 4.37 中文文档(四十二)
45 4
|
5月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十九)(4)
Transformers 4.37 中文文档(二十九)
40 12
|
5月前
|
XML 测试技术 数据格式
Transformers 4.37 中文文档(四十二)(4)
Transformers 4.37 中文文档(四十二)
41 3
|
5月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十九)(2)
Transformers 4.37 中文文档(二十九)
36 5
|
5月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(四十二)(3)
Transformers 4.37 中文文档(四十二)
32 2
|
5月前
|
自然语言处理 PyTorch 区块链
Transformers 4.37 中文文档(四十二)(1)
Transformers 4.37 中文文档(四十二)
90 1
|
5月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(四十二)(2)
Transformers 4.37 中文文档(四十二)
68 1
|
5月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十九)(1)
Transformers 4.37 中文文档(二十九)
46 3

热门文章

最新文章