Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。该技术蓬勃发展,应用广泛,如人脸识别门禁系统、刷脸支付软件等。

人脸识别在本质上是根据每张人脸图像中不同像素点的颜色进行数据建模与判断。人脸图像的每个像素点的颜色都有不同的值,这些值可以组成人脸的特征向量,不过因为人脸图像的像素点很多,所以特征变量也很多,需要利用PCA进行数据降维。

本项目先对人脸数据进行读取和处理,再通过PCA进行数据降维,最后用K近邻算法搭建模型进行人脸识别。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),,数据项统计如下

数据集中图片的文件名由4部分组成:

l 第1部分是该张图片对应的人脸编号;

l 第2部分是固定分隔符“_”;

l 第3部分是该张图片在该人脸10张图片中的顺序编号;

l 第4部分是文件扩展名“.jpg”。

以“10_0.jpg”为例,10代表编号为10的人的图片,“_”是第1部分和第3部分的分隔符,0代表这个人的10张图片中编号为0的那一张,“.jpg”为文件扩展名。 

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 图片数据读取

使用os模块列出前5个图片的名称:

image.png

从上图可以看到,总共有9个字段。

关键代码:

image.png

3.2 特征变量提取

使用Image. convert('L')方法进行特征变量提取:

image.png

关键代码:

image.png

3.3 图片灰度值数据框显示

使用Pandas工具的DataFrame()方法进行转换:

image.png

3.4 批量处理图片

通过for循环批量处理图片:

image.png

3.5 目标变量提取

通过Image模块的open()方法读取目标变量:

image.png

关键代码:

image.png

4.探索性数据分析

4.1 显示第一张图片

用Image工具的open()方法进行进行图片的显示:

image.png

5.特征工程

5.1 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试。关键代码如下:

image.png

5.2 PCA数据降维

使用PCA算法进行数据的降维,输出如下:

image.png

关键代码如下:

image.png

6.构建人脸识别模型

主要使用KNeighborsClassifier算法,用于目标分类。

6.1 模型构建

 

 

编号

模型名称

参数

1

KNN人脸识别模型

n_neighbors=5(默认参数值)

2

weights=’uniform’

 

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、召回率、F1分值等等。

模型名称

指标名称

指标值

测试集

KNN人脸识别模型

准确率

0.8875

查准率

0.9012

召回率

0.8875

F1分值

0.8753

从上表可以看出,人脸识别模型效果良好。

关键代码如下:

image.png

7.2 查看是否过拟合

查看训练集和测试集的分数:

image.png

通过结果可以看到,训练集分数和测试集分数基本相当,所以没有出现过拟合现象。

关键代码:

image.png

7.3 分类报告

人脸识别模型分类报告:

image.png

从上图可以看出,分类为1的F1分值为0.67;分类为2的F1分值为1.00,其它类型的以此类推。

8.结论与展望

综上所述,本项目采用了PCA数据降维和KNN分类模型,最终证明了我们提出的模型效果良好。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1TMdSS-NsYWgeXMlCdW1EVQ 
提取码:kd4a
相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
人工智能 自然语言处理 算法
算法及模型合规:刻不容缓的企业行动指南
随着AI技术迅猛发展,算法与模型成为企业数字化转型的核心。然而,国家密集出台多项法规,如《人工智能生成合成内容标识办法》等,并开展“清朗·整治AI技术滥用”专项行动,标志着AI监管进入严格阶段。算法备案从“可选项”变为“必选项”,未合规可能面临罚款甚至刑事责任。同时,多地提供备案奖励政策,合规既是规避风险的需要,也是把握政策红利和市场信任的机遇。企业需系统规划合规工作,从被动应对转向主动引领,以适应AI时代的挑战与机遇。
|
5月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
652 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
206 6
|
6月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
7月前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
191 21
|
算法 数据挖掘 Python
python实现KNN(最近邻)算法
python实现KNN(最近邻)算法
272 0
|
算法 Python 机器学习/深度学习
Python 实现 KNN(K-近邻)算法
Python 实现 KNN(K-近邻)算法 一、概述   KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类。用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
4144 0
|
6月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
212 33
|
2月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
87 1

推荐镜像

更多