【YOLOv8改进 - 注意力机制】NAM:基于归一化的注意力模块,将权重稀疏惩罚应用于注意力机制中,提高效率性能

简介: **NAM: 提升模型效率的新颖归一化注意力模块,抑制非显著权重,结合通道和空间注意力,通过批量归一化衡量重要性。在Resnet和Mobilenet上的实验显示优于其他三种机制。源码见[GitHub](https://github.com/Christian-lyc/NAM)。**

介绍

image-20240630171637321

摘要

识别较不显著的特征是模型压缩的关键。然而,这在革命性的注意力机制中尚未被研究。在这项工作中,我们提出了一种新颖的基于归一化的注意力模块(NAM),该模块抑制了较不显著的权重。它对注意力模块施加了权重稀疏惩罚,从而使其在保留相似性能的同时变得更具计算效率。在Resnet和Mobilenet上与其他三种注意力机制的比较表明,我们的方法可以带来更高的准确性。本文的代码可以在https://github.com/Christian-lyc/NAM公开获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

NAM (Normalization-based Attention Module)是一种新颖的注意力机制,旨在通过抑制不太显著的特征来提高模型的效率。NAM模块将权重稀疏惩罚应用于注意力机制中,以提高计算效率同时保持性能。NAM模块通过批量归一化(Batch Normalization)的缩放因子来衡量通道的重要性,避免了SE(Squeeze-and-Excitation)、BAM(Bottleneck Attention Module)和CBAM(Convolutional Block Attention Module)中使用的全连接和卷积层。这使得NAM成为一种高效的注意力机制。

NAM模块结合了通道注意力和空间注意力的子模块,利用批量归一化的缩放因子来衡量通道和像素的重要性,从而实现对特征的有效识别和利用。

  1. 通道注意力子模块:使用批量归一化的缩放因子来衡量通道的重要性,通过计算权重来获得输出特征。

image-20240630171918385

  1. 空间注意力子模块:应用像素归一化来衡量像素的重要性,得到输出特征。

    image-20240630171931703

  2. 权重稀疏惩罚:NAM模块通过添加正则化项到损失函数中,以抑制不太显著的权重,从而提高模型的泛化能力和效率。

数学公式:
NAM模块的损失函数如下所示:
$$ Loss = ∑(x,y) l(f(x, W), y) + p ∑ g(γ) + p ∑ g(λ) $$

其中:

  • x:输入
  • y:输出
  • W:网络权重
  • l(·):损失函数
  • g(·):l1范数惩罚函数
  • p:平衡g(γ)和g(λ)的惩罚参数

通道注意力子模块的输出特征:
$$ M_c = sigmoid(W_γ(BN(F_1))) $$

空间注意力子模块的输出特征(Equation 3):
$$ M_s = sigmoid(W_λ(BN_s(F_2))) $$

其中:

  • M_c:通道注意力子模块的输出特征
  • M_s:空间注意力子模块的输出特征
  • W_γ:通道注意力子模块的权重
  • W_λ:空间注意力子模块的权重
  • BN:批量归一化
  • F_1、F_2:输入特征

核心代码

import torch.nn as nn
import torch
from torch.nn import functional as F

# 定义通道注意力模块
class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels  # 输入的通道数

        # 定义批量归一化层
        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)

    def forward(self, x):
        residual = x  # 保存输入特征图以便后续相乘

        x = self.bn2(x)  # 对输入特征图进行批量归一化处理

        # 获取批量归一化层的权重,并进行绝对值处理和归一化
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())

        # 调整特征图的维度顺序,从[N, C, H, W]变为[N, H, W, C]
        x = x.permute(0, 2, 3, 1).contiguous()

        # 将归一化后的权重与调整维度后的特征图相乘
        x = torch.mul(weight_bn, x)

        # 再将特征图的维度顺序调整回[N, C, H, W]
        x = x.permute(0, 3, 1, 2).contiguous()

        # 对特征图进行Sigmoid激活,并与残差相乘
        x = torch.sigmoid(x) * residual

        return x  # 返回处理后的特征图

# 定义注意力模块
class Att(nn.Module):
    def __init__(self, channels, shape, out_channels=None, no_spatial=True):
        super(Att, self).__init__()
        # 实例化通道注意力模块
        self.Channel_Att = Channel_Att(channels)

    def forward(self, x):
        # 将输入特征图通过通道注意力模块
        x_out1 = self.Channel_Att(x)

        return x_out1  # 返回通道注意力处理后的特征图

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140083725

相关文章
|
8月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
1073 13
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
|
8月前
|
机器学习/深度学习 资源调度 计算机视觉
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
237 1
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
706 1
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
|
8月前
|
计算机视觉 Perl
RT-DETR改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
249 15
RT-DETR改进策略【卷积层】| CVPR-2024 PKI Module 获取多尺度纹理特征,适应尺度变化大的目标
|
机器学习/深度学习 算法 网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
751 0
YOLOv11改进策略【卷积层】| CVPR-2023 部分卷积 PConv 轻量化卷积,降低内存占用
|
8月前
|
机器学习/深度学习 数据可视化 算法
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1437 6
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
8月前
|
机器学习/深度学习 数据可视化 算法
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
666 5
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
742 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器