基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该文介绍了车辆路径问题(VRP)的优化求解,特别是动态车辆路径问题(DVRP)。在MATLAB2022a中运用GA-PSO混合优化算法进行测试,展示了运行结果图像。核心程序包含粒子更新、交叉、距离计算等步骤。DVRP在物流配送、运输调度中有广泛应用,目标是最小化行驶距离并满足车辆容量限制。遗传算法通过选择、交叉和变异操作寻找解,而粒子群优化模拟鸟群行为更新速度和位置。GA-PSO混合算法结合两者优点,提高搜索效率。在DVRP中,算法需考虑问题特性和约束,以找到高质量解。

1.程序功能描述
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。DVRP是一个经典的组合优化问题,在物流配送、运输调度等领域有广泛应用。它要求确定一组最优路径,使得一定数量的车辆从起点(通常是配送中心)出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
..............................................................
```while gen <= Iters
gen
%粒子更新
for i=1:Npop
%交叉
Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
%计算距离
Popd(i) = func_dist(Pops(i,:),Mdist,Travel);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end

    %更新Gbest
    [mindis,index] = min(Pdbest); 

    if mindis<Gdbest

Gbest =Pbest(index,:);
Gdbest = mindis;
end

    %粒子与Gbest交叉
    Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Gbest(2:end-1));

    %粒子变异

Popd(i) = func_dist(Pops(i,:),Mdist,Travel);
if Popd(i) < Pdbest(i)
Pbest(i,:) = Pops(i,:);
Pdbest(i) =Popd(i);
end

    %变异

Pops(i,:)=func_Mut(Pops(i,:));
Popd(i) = func_dist(Pops(i,:),Mdist,Travel);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end

    %更新Gbest
    [mindis,index] = min(Pdbest); 
    if mindis<Gdbest

Gbest = Pbest(index,:);
Gdbest = mindis;
end
end

gbest(gen)=Gdbest;

gen=gen+1;

end
16

```

4.本算法原理
基于GA-PSO(遗传算法-粒子群优化)混合优化算法的DVRP(车辆路径问题)问题求解是一种结合遗传算法(GA)和粒子群优化(PSO)两种智能优化算法的方法,用于解决复杂的组合优化问题。DVRP是一个经典的组合优化问题,在物流配送、运输调度等领域有广泛应用。它要求确定一组最优路径,使得一定数量的车辆从起点(通常是配送中心)出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。

4.1 遗传算法(GA)基本原理
遗传算法是一种模拟自然选择和遗传机制的优化算法。它通过选择、交叉和变异等操作来模拟生物进化过程,从而寻找问题的最优解。在DVRP问题中,遗传算法的主要步骤如下:

编码:将问题的解(即车辆路径)表示为一种可以被遗传算法操作的编码形式。常见的编码方式包括基于客户序列的编码和基于路径的编码。

初始种群:随机生成一组初始解,构成初始种群。每个解代表一个可能的车辆路径方案。

适应度函数:定义一个适应度函数来评估每个解的质量。在DVRP问题中,适应度函数通常是路径总成本的倒数或负数,以最小化行驶距离为目标。

选择:根据适应度函数选择种群中较优的个体,用于产生下一代。常见的选择操作包括轮盘赌选择、锦标赛选择等。

交叉:通过交叉操作结合两个父代个体的部分基因,生成新的子代个体。在DVRP问题中,常用的交叉操作包括顺序交叉、部分匹配交叉等。

变异:对个体编码进行随机的小幅度改动,以增加种群的多样性。常见的变异操作包括交换变异、倒位变异等。

终止条件:当达到预设的迭代次数或满足其他终止条件时,算法停止,并输出当前最优解。

4.2 粒子群优化(PSO)基本原理
粒子群优化算法是一种模拟鸟群觅食行为的优化算法。它通过个体和群体的历史最佳位置来更新粒子的速度和位置,从而寻找问题的最优解。在PSO中,每个粒子代表一个潜在的解,并具有速度和位置属性。在DVRP问题中,粒子群优化的主要步骤如下:

初始化粒子群:随机初始化粒子的位置和速度。每个粒子的位置代表一个可能的车辆路径方案。

评估粒子:使用适应度函数评估每个粒子的质量。

更新个体和全局最佳位置:记录每个粒子的历史最佳位置和群体中的全局最佳位置。

更新速度和位置:根据个体和全局最佳位置更新粒子的速度和位置。速度更新公式为:
3.png

5.终止条件:当达到最大迭代次数或满足其他终止条件时,算法停止。

4.3 GA-PSO混合优化算法
GA-PSO混合算法结合了遗传算法的全局搜索能力和粒子群优化算法的局部搜索能力,以提高搜索效率和找到更优解的可能性。在DVRP问题中,GA-PSO混合优化算法的主要步骤如下:

初始化:同时初始化遗传算法的种群和粒子群优化的粒子群。

评估:使用相同的适应度函数评估种群和粒子群中的解。

遗传操作:在遗传算法的种群中执行选择、交叉和变异操作。这些操作可以帮助算法在全局范围内搜索可能的解空间。

粒子群操作:在粒子群中更新速度和位置。这些操作可以帮助算法在局部范围内进行更精细的搜索。

信息交流:在两种算法之间交换信息,以促进全局和局部搜索之间的平衡。例如,可以将遗传算法中的优秀个体引入粒子群,或将粒子群中的优秀粒子引入遗传算法的种群。

终止条件:当达到预设的迭代次数或满足其他终止条件时,算法停止,并从两种算法中选择最优解作为最终解。

4.4 GA-PSO在DVRP中的应用
在DVRP问题中,GA-PSO混合算法的具体实现需要针对问题的特点进行相应调整。例如,在编码阶段,可以采用基于客户序列的编码方式,每个解表示为一个客户序列,表示车辆的访问顺序。适应度函数可以定义为路径总成本的倒数或负数,以最小化行驶距离为目标。遗传操作和粒子群操作需要根据问题的约束条件(如车辆容量限制)进行定制,以确保生成的解是可行的。

   通过结合遗传算法和粒子群优化算法的优势,GA-PSO混合优化算法能够在复杂的搜索空间中进行高效的全局和局部搜索,从而有望找到更高质量的解来解决DVRP问题。这种混合算法在求解大规模、复杂约束的DVRP问题时表现出较好的性能和鲁棒性。
相关文章
|
28天前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
28天前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
28天前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
算法 安全 定位技术
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
218 40
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
6月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
2月前
|
机器学习/深度学习 边缘计算 并行计算
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
226 2
|
6月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
2月前
|
传感器 算法 Serverless
【无人机协同】基于遗传算法GA的同构异构无人机UAV协同搜索研究(Matlab代码实现)
【无人机协同】基于遗传算法GA的同构异构无人机UAV协同搜索研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 数据采集 算法
【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化(Matlab代码实现)
【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化(Matlab代码实现)
116 0