YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
简介: 本文介绍了如何在YOLOv8中集成GcNet,以增强网络对全局上下文的捕获能力。GcNet通过全局上下文模块、通道和空间注意力机制提升CNN对全局信息的利用。教程详细阐述了GcNet的原理,并提供了将GcNet添加到YOLOv8的代码实现步骤,包括创建ContextBlock类、修改init.py、task.py以及配置yaml文件。此外,还提供了训练和运行示例代码。完整代码和更多进阶内容可在作者的博客中找到。


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

非局部网络通过将特定于查询的全局上下文聚合到每个查询位置,为捕获长距离依赖关系提供了一种开创性的方法。然而,通过实验证明,非局部网络建模的全局上下文在图像内不同的查询位置几乎是相同的。因此,利用这一发现创建了一个简化的网络。在本文中,给大家带来的教程是将原来的的网络替换添加GcNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

1. 原理

论文地址:GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond点击即可跳转

官方代码:官方代码仓库——点击即可跳转

GCNet(Global Context Network)是一种用于计算机视觉任务的注意力机制模型。该模型旨在提高深度神经网络对全局上下文信息的理解和利用,以改善其在各种视觉任务中的性能。

GCNet 主要解决的问题是,传统的卷积神经网络(CNN)在处理图像时,往往只关注局部信息,而忽略了图像的全局上下文信息。GCNet 引入了全局上下文注意力机制,允许网络在处理图像时动态地调整不同位置的权重,以更好地捕捉全局信息。

GCNet 的主要组成部分:
全局上下文模块:GCNet 包括一个全局上下文模块,用于从整个图像中提取全局信息。这个模块通常由全局平均池化层(Global Average Pooling)组成,用于将整个特征图压缩成一个全局特征向量。

通道注意力机制:GCNet 使用通道注意力机制来动态地调整特征图中每个通道的权重,以更好地捕获图像中不同通道的重要性。这有助于网络更加聚焦于对解决当前任务最重要的特征。

空间注意力机制:除了通道注意力,GCNet 还引入了空间注意力机制,以考虑不同位置之间的关系。这个机制通常通过使用卷积操作来实现,以便网络可以学习到图像中不同位置之间的依赖关系。

反馈机制:GCNet 通常具有反馈机制,允许网络根据任务的需求动态地调整注意力权重。这种反馈机制通常通过在训练过程中引入反向传播来实现,网络可以根据任务的损失来调整注意力权重。

总的来说,GCNet 通过引入全局上下文注意力机制,允许网络更好地理解和利用图像的全局信息,从而提高了在各种计算机视觉任务中的性能。它的核心思想是通过动态地调整注意力权重来关注图像中最相关的信息,从而提高了网络的表现。

2. GcNet代码实现

2.1 将GcNet添加到YOLOv8中

class ContextBlock(nn.Module):
    def __init__(self,inplanes,ratio,pooling_type='att',
                 fusion_types=('channel_add', )):
        super(ContextBlock, self).__init__()
        valid_fusion_types = ['channel_add', 'channel_mul']

        assert pooling_type in ['avg', 'att']
        assert isinstance(fusion_types, (list, tuple))
        assert all([f in valid_fusion_types for f in fusion_types])
        assert len(fusion_types) > 0, 'at least one fusion should be used'

        self.inplanes = inplanes
        self.ratio = ratio
        self.planes = int(inplanes * ratio)
        self.pooling_type = pooling_type
        self.fusion_types = fusion_types

        if pooling_type == 'att':
            self.conv_mask = nn.Conv2d(inplanes, 1, kernel_size=1)
            self.softmax = nn.Softmax(dim=2)
        else:
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
        if 'channel_add' in fusion_types:
            self.channel_add_conv = nn.Sequential(
                nn.Conv2d(self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(inplace=True),  # yapf: disable
                nn.Conv2d(self.planes, self.inplanes, kernel_size=1))
        else:
            self.channel_add_conv = None
        if 'channel_mul' in fusion_types:
            self.channel_mul_conv = nn.Sequential(
                nn.Conv2d(self.inplanes, self.planes, kernel_size=1),
                nn.LayerNorm([self.planes, 1, 1]),
                nn.ReLU(inplace=True),  # yapf: disable
                nn.Conv2d(self.planes, self.inplanes, kernel_size=1))
        else:
            self.channel_mul_conv = None


    def spatial_pool(self, x):
        batch, channel, height, width = x.size()
        if self.pooling_type == 'att':
            input_x = x
            # [N, C, H * W]
            input_x = input_x.view(batch, channel, height * width)
            # [N, 1, C, H * W]
            input_x = input_x.unsqueeze(1)
            # [N, 1, H, W]
            context_mask = self.conv_mask(x)
            # [N, 1, H * W]
            context_mask = context_mask.view(batch, 1, height * width)
            # [N, 1, H * W]
            context_mask = self.softmax(context_mask)
            # [N, 1, H * W, 1]
            context_mask = context_mask.unsqueeze(-1)
            # [N, 1, C, 1]
            context = torch.matmul(input_x, context_mask)
            # [N, C, 1, 1]
            context = context.view(batch, channel, 1, 1)
        else:

完整内容及代码:YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】——点击即可跳转

GCNet的主要流程可以概括为以下几个步骤:

在整个流程中,GCNet通过全局上下文模块和注意力机制,使网络能够更好地理解和利用图像中的全局信息,并自适应地关注对解决当前任务最重要的特征通道和位置信息,从而提高了网络在各种图像处理任务中的性能和效果。

2.2 更改init.py文件

然后在下面的all中声明函数

2.3 在task.py中进行注册

2.4 添加yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:

# YOLOv8.0n head
head:

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

温馨提示:因为本文只是对yolov8n基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。或者指定某个模型即可

# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple

# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.5 执行程序

from ultralytics import YOLO

# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8l_test.yaml')  # build from YAML and transfer weights

# Train the model
model.train(device = [3], batch=16)

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】——点击即可跳转

提取码: nvc5

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8lGFLOPs

改进后的GFLOPs

5. 进阶

你能在不同的位置添加GcNet吗

6. 总结

GCNet(Global Context Network)是一种引入全局上下文信息和注意力机制的图像处理模型。其流程首先通过全局上下文模块提取整个图像的全局信息,然后通过通道注意力机制动态调整特征图中每个通道的权重,使网络能够自适应地关注对解决当前任务最重要的特征通道。接着,GCNet引入空间注意力机制,学习不同位置之间的依赖关系,以更好地捕捉图像中的结构信息。通过全局上下文模块和注意力机制的综合利用,GCNet使网络能够更充分地理解和利用图像中的全局信息,从而提高了在各种图像处理任务中的性能和效果。

相关文章
|
26天前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】CoordAttention: 用于移动端的高效坐标注意力机制 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种新的移动网络注意力机制——坐标注意力。它将位置信息融入通道注意力,通过1D特征编码处理,捕获长距离依赖并保持位置精度。生成的注意力图能增强目标表示,适用于MobileNetV2、MobileNeXt和EfficientNet等网络,提高性能,且几乎不增加计算成本。在ImageNet分类和下游任务(目标检测、语义分割)中表现出色。YOLOv8中引入了CoordAtt模块,实现位置敏感的注意力。更多详情及配置见相关链接。
|
1月前
|
机器学习/深度学习 Java 网络架构
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
213 0
|
机器学习/深度学习 传感器 编解码
再谈注意力机制 | 运用强化学习实现目标特征提取
再谈注意力机制 | 运用强化学习实现目标特征提取
再谈注意力机制 | 运用强化学习实现目标特征提取
|
12天前
|
机器学习/深度学习 自然语言处理 并行计算
YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】
Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。
|
25天前
|
机器学习/深度学习 自然语言处理 算法
YOLOv5改进 | 注意力机制 | 添加三重注意力机制 TripletAttention【完整代码】
本文介绍了三重注意力机制在YOLOv5目标检测中的应用,这是一种轻量级方法,通过三分支结构捕获跨维度交互来计算注意力权重,几乎不增加计算开销。文章详细阐述了三重注意力的原理,包括全局、组间和组内三个层次的注意力计算,并提供了将TripletAttention模块添加到YOLOv5网络的教程。作者提供了代码实现和yaml配置文件的修改指导,以及在训练脚本中设置配置文件路径的步骤。完整代码附在文章末尾,适合初学者实践。此外,文章还鼓励读者探索在不同位置添加三重注意力以进一步优化模型性能。
|
26天前
|
计算机视觉
【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
该文介绍了DilateFormer,一种新提出的视觉变换器,它在计算效率和关注接受域之间取得平衡。通过分析ViTs,发现浅层的局部性和稀疏性,提出了多尺度扩张注意力(MSDA),用于局部、稀疏的块交互。DilateFormer结合MSDA块和全局多头自注意力块,形成金字塔架构,实现各视觉任务的顶尖性能。与现有最佳模型相比,在ImageNet-1K分类任务上,DilateFormer性能相当但计算成本降低70%,同时在COCO检测/分割和ADE20K语义分割任务上表现优秀。文章还展示了MSDA的创新点,包括多尺度聚合、局部稀疏交互和减少自注意力冗余。此外,
|
13天前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
|
13天前
|
机器学习/深度学习
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
|
1月前
|
机器学习/深度学习 自然语言处理 算法
注意力机制(四)(多头注意力机制)
在上一篇注意力机制(三)(不同注意力机制对比)-CSDN博客,重点讲了针对QKV来源不同制造的注意力机制的一些变体,包括交叉注意力、自注意力等。这里再对注意力机制理解中的核心要点进行归纳整理
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
一文搞懂Transformer架构的三种注意力机制
一文搞懂Transformer架构的三种注意力机制
188 1

热门文章

最新文章