【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)

简介: 该文介绍了DilateFormer,一种新提出的视觉变换器,它在计算效率和关注接受域之间取得平衡。通过分析ViTs,发现浅层的局部性和稀疏性,提出了多尺度扩张注意力(MSDA),用于局部、稀疏的块交互。DilateFormer结合MSDA块和全局多头自注意力块,形成金字塔架构,实现各视觉任务的顶尖性能。与现有最佳模型相比,在ImageNet-1K分类任务上,DilateFormer性能相当但计算成本降低70%,同时在COCO检测/分割和ADE20K语义分割任务上表现优秀。文章还展示了MSDA的创新点,包括多尺度聚合、局部稀疏交互和减少自注意力冗余。此外,

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

作为事实上的解决方案,标准的视觉变换器(ViTs)被鼓励模拟任意图像块之间的长距离依赖性,而全局关注的接受域导致了二次计算成本。视觉变换器的另一个分支受到CNNs启发,利用局部注意力,只模拟小邻域内块之间的交互。尽管这样的解决方案降低了计算成本,但它自然会受到小的关注接受域的限制,这可能会限制性能。在这项工作中,我们探索有效的视觉变换器,以追求计算复杂性和关注接受域大小之间的理想折衷。通过分析ViTs中全局注意力的块交互,我们观察到浅层中的两个关键属性,即局部性和稀疏性,表明在ViTs的浅层中全局依赖性建模的冗余。因此,我们提出多尺度扩张注意力(MSDA),在滑动窗口内模拟局部和稀疏的块交互。通过金字塔架构,我们通过在低级阶段堆叠MSDA块和在高级阶段堆叠全局多头自注意力块,构建了多尺度扩张变换器(DilateFormer)。我们的实验结果表明,我们的DilateFormer在各种视觉任务上实现了最先进的性能。在ImageNet-1K分类任务上,与现有的最先进模型相比,DilateFormer实现了相当的性能,而计算成本减少了70%。我们的DilateFormer-Base在ImageNet-1K分类任务上实现了85.6%的顶级准确率,在COCO对象检测/实例分割任务上实现了53.5%的框mAP/46.1%的掩码mAP,在ADE20K语义分割任务上实现了51.1%的MS mIoU。

MSDA创新点

  1. 利用多尺度扩张机制:通过在不同头部设置不同的扩张率,MSDA能够在不同尺度上聚合语义信息,从而更好地捕获多尺度的特征。

  2. 捕获局部稀疏的补丁交互:MSDA在滑动窗口内稀疏选择关键点和值,以模拟局部稀疏的补丁交互,从而减少全局依赖建模的冗余。

  3. 降低自注意机制的冗余:通过有效地聚合不同尺度的语义信息,MSDA能够减少自注意机制的冗余,提高模型的效率和性能。

yolov8 引入


 class MultiDilatelocalAttention(nn.Module):
    "Implementation of Dilate-attention"

    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
                 attn_drop=0.,proj_drop=0., kernel_size=3, dilation=[1, 2, 3]):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.dilation = dilation
        self.kernel_size = kernel_size
        self.scale = qk_scale or head_dim ** -0.5
        self.num_dilation = len(dilation)
        assert num_heads % self.num_dilation == 0, f"num_heads{num_heads} must be the times of num_dilation{self.num_dilation}!!"
        self.qkv = nn.Conv2d(dim, dim * 3, 1, bias=qkv_bias)
        self.dilate_attention = nn.ModuleList(
            [DilateAttention(head_dim, qk_scale, attn_drop, kernel_size, dilation[i])
             for i in range(self.num_dilation)])
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, H, W, C = x.shape
        x = x.permute(0, 3, 1, 2)# B, C, H, W
        qkv = self.qkv(x).reshape(B, 3, self.num_dilation, C//self.num_dilation, H, W).permute(2, 1, 0, 3, 4, 5)
        #num_dilation,3,B,C//num_dilation,H,W
        x = x.reshape(B, self.num_dilation, C//self.num_dilation, H, W).permute(1, 0, 3, 4, 2 )
        # num_dilation, B, H, W, C//num_dilation
        for i in range(self.num_dilation):
            x[i] = self.dilate_attention[i](qkv[i][0], qkv[i][1], qkv[i][2])# B, H, W,C//num_dilation
        x = x.permute(1, 2, 3, 0, 4).reshape(B, H, W, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136215149

相关文章
|
5月前
|
机器学习/深度学习 数据可视化 计算机视觉
YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)
YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)
465 0
|
3月前
|
机器学习/深度学习 存储 测试技术
【YOLOv10改进-注意力机制】iRMB: 倒置残差移动块 (论文笔记+引入代码)
YOLOv10专栏介绍了融合CNN与Transformer的iRMB模块,用于轻量级模型设计。iRMB在保持高效的同时结合了局部和全局信息处理,减少了资源消耗,提升了移动端性能。在ImageNet等基准上超越SOTA,且在目标检测等任务中表现优秀。代码示例展示了iRMB的实现细节,包括自注意力机制和卷积操作的整合。更多配置信息见相关链接。
|
5月前
|
机器学习/深度学习 存储 测试技术
【YOLOv8改进】iRMB: 倒置残差移动块 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战案例,提出了一种融合CNN和Transformer优点的轻量级模型——倒置残差移动块(iRMB)。iRMB旨在平衡参数、运算效率与性能,适用于资源有限的移动端。通过集成多头自注意力和卷积,iRMB在ImageNet-1K等基准上超越SOTA,同时在iPhone14上展现出比EdgeNeXt快2.8-4.0倍的速度。此外,iRMB设计简洁,适用于各种计算机视觉任务,展示出良好的泛化能力。代码示例展示了iRMB模块的实现细节。更多详细信息和配置可在相关链接中找到。
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
|
3月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
3月前
|
机器学习/深度学习 安全 固态存储
【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感
YOLO系列目标检测模型的新发展,LS-YOLO专为滑坡检测设计。它使用多尺度滑坡数据集(MSLD)和多尺度特征提取(MSFE)模块,结合ECA注意力,提升定位精度。通过改进的解耦头,利用膨胀卷积增强上下文信息。在滑坡检测任务中,LS-YOLO相对于YOLOv5s的AP提高了2.18%,达到97.06%。论文和代码已开源。
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
4月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
4月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
5月前
|
计算机视觉
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。