数据结构的树存储结构(上)

简介: 数据结构的树存储结构

数据结构的树存储结构


之前介绍的所有的数据结构都是线性存储结构。本章所介绍的树结构是一种非线性存储结构, 存储的是具有“一对多”关系的数据元素的集合。

image.png

                                                               

      (A)                                                                        (B)

图 1 树的示例


图 1(A) 是使用树结构存储的集合 {A,B,C,D,E,F,G,H,I,J,K,L,M} 的示意图。对于数据 A 来说,和数据 B、C、D 有关系;对于数据 B 来说,和 E、F 有关系。这就是“一对多”的关系。


将具有“一对多”关系的集合中的数据元素按照图 1(A)的形式进行存储,整个存储形状在逻辑结构上看,类似于实际生活中倒着的树(图 1(B)倒过来),所以称这种存储结构为“树型”存储结构。


树的结点


结点:使用树结构存储的每一个数据元素都被称为“结点”。例如,图 1(A)中,数据元素 A 就是一个结点;


父结点(双亲结点)、子结点和兄弟结点:对于图 1(A)中的结点 A、B、C、D 来说,A 是 B、C、D 结点的父结点(也称为“双亲结点”),而 B、C、D 都是 A 结点的子结点( 也称“孩子结点”)。对于 B、C、D 来说,它们都有相同的父结点,所以它们互为兄弟结点


树根结点(简称“根结点”):每一个非空树都有且只有一个被称为根的结点。图 1(A)中,结点 A 就是整棵树的根结点。


树根的判断依据为:如果一个结点没有父结点, 那么这个结点就是整棵树的根结点。


叶子结点:如果结点没有任何子结点,那么此结点称为叶子结点(叶结点)。例如图 1(A)中,结点 K、L、F、G、M、I、J 都是这棵树的叶子结点。


子树和空树


子树:如图 1(A)中,整棵树的根结点为结点 A,而如果单看结点 B、E、F、K、L 组成的部分来说,也是棵树,而且节点 B 为这棵树的根结点。所以称 B、E、F、K、L 这几个结点组成的树为整棵树的子树;同样,结点 E、K、L 构成的也是一棵子树,根结点为 E。


注意:单个结点也是一棵树,只不过根结点就是它本身。图 1(A)中,结点 K、L、F 等都是树,且都是整棵树的子树。

知道了子树的概念后,树也可以这样定义:树是由根结点和若干棵子树构成的。


空树:如果集合本身为空,那么构成的树就被称为空树。空树中没有结点。


补充:在树结构中,对于具有同一个根结点的各个子树,相互之间不能有交集。例如,图 1(A)中,除了根结点 A,其余元素又各自构成了三个子树,根结点分别为 B、C、D,这三个子树相互之间没有相同的结点。如果有,就破坏了树的结构,不能算做是一棵树。


结点的度和层次


对于一个结点,拥有的子树数(结点有多少分支)称为结点的度(Degree) 。例如,图 1(A)中,根结点 A 下分出了 3 个子树,所以,结点 A 的度为 3。


一棵树的度是树内各结点的度的最大值。图 1(A)表示的树中,各个结点的度的最大值为 3,所以,整棵树的度的值是 3。

image.png

结点的层次:从一棵树的树根开始,树根所在层为第一层,根的孩子结点所在的层为第二层,依次类推。对于图 1(A)来说,A 结点在第一层,B、C、D 为第二层,E、F、G、H、I、J 在第三层,K、L、M 在第四层。


一棵树的深度(高度)是树中结点所在的最大的层次。图 1(A)树的深度为 4。


如果两个结点的父结点虽不相同,但是它们的父结点处在同一层次上,那么这两个结点互为堂兄弟。例如,图 1(A)中,结点 G 和 E、F、H、I、J 的父结点都在第二层,所以之间为堂兄弟的关系。


有序树和无序树


如果树中结点的子树从左到右看,谁在左边,谁在右边,是有规定的,这棵树称为有序树;反之称为无序树。


在有序树中,一个结点最左边的子树称为"第一个孩子",最右边的称为"最后一个孩子"。


拿图 1(A)来说,如果是其本身是一棵有序树,则以结点 B 为根结点的子树为整棵树的第一个孩子,以结点 D 为根结点的子树为整棵树的最后一个孩子。


森林


由 m(m >= 0)个互不相交的树组成的集合被称为森林。图 1(A)中 ,分别以 B、C、D 为根结点的三棵子树就可以称为森林。


前面讲到,树可以理解为是由根结点和若干子树构成的,而这若干子树本身是一个森林,所以,树还可以理解为是由根结点和森林组成的。用一个式子表示为:

Tree =(root,F)

其中,root 表示树的根结点,F 表示由 m(m >= 0)棵树组成的森林。


树的表示方法


除了图 1(A)表示树的方法外,还有其他表示方法:

image.png

(A)                                         (B)

图2 树的表示形式


图 2(A)是以嵌套的集合的形式表示的(集合之间绝不能相交,即图中任意两个圈不能相交)。


图 2(B)使用的是凹入表示法(了解即可),表示方式是:最长条为根结点,相同长度的表示在同一层次。 例如 B、C、D 长度相同,都为 A 的子结点,E 和 F 长度相同,为 B 的子结点,K 和 L 长度相同,为 E 的子结点,依此类推。


最常用的表示方法是使用广义表的方式。图 1(A)用广义表表示为:

(A , ( B ( E ( K , L ) , F ) , C ( G ) , D ( H ( M ) , I , J ) ) )


总结


树型存储结构类似于家族的族谱,各个结点之间也同样可能具有父子、兄弟、表兄弟的关系。本节中,要重点理解树的根结点和子树的定义,同时要会计算树中各个结点的度和层次,以及树的深度。


什么是二叉树(包含满二叉树和完全二叉树)


简单地理解,满足以下两个条件的树就是二叉树:

  1. 本身是有序树;
  2. 树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2;


例如,图 1a) 就是一棵二叉树,而图 1b) 则不是。

image.png

图 1 二叉树示意图


二叉树的性质


经过前人的总结,二叉树具有以下几个性质:


  1. 二叉树中,第 i 层最多有 2i-1 个结点
  2. 如果二叉树的深度为 K,那么此二叉树最多有 2K-1 个结点。
  3. 二叉树中,终端结点数(叶子结点数)为 n0,度为 2 的结点数为 n2,则 n0=n2+1


性质 3 的计算方法为:对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点 n=n0+n1+n2


同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数 n=B+1。而分枝数是可以通过 n1 和 n2 表示的,即 B=n1+2*n2。所以,n 用另外一种方式表示为 n=n1+2*n2+1。


两种方式得到的 n 值组成一个方程组,就可以得出 n0=n2+1。


二叉树还可以继续分类,衍生出满二叉树和完全二叉树。


满二叉树


如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。

image.png

图 2 满二叉树示意图


如图 2 所示就是一棵满二叉树。


满二叉树除了满足普通二叉树的性质,还具有以下性质:


  1. 满二叉树中第 i 层的节点数为 2n-1 个。
  2. 深度为 k 的满二叉树必有 2k-1 个节点 ,叶子数为 2k-1。
  3. 满二叉树中不存在度为 1 的节点,每一个分支点中都两棵深度相同的子树,且叶子节点都在最底层。
  4. 具有 n 个节点的满二叉树的深度为 log2(n+1)。


完全二叉树


如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。

image.png

图 3 完全二叉树示意图


如图 3a) 所示是一棵完全二叉树,图 3b) 由于最后一层的节点没有按照从左向右分布,因此只能算作是普通的二叉树。


完全二叉树除了具有普通二叉树的性质,它自身也具有一些独特的性质,比如说,n 个结点的完全二叉树的深度为 ⌊log2n⌋+1。


⌊log2n⌋ 表示取小于 log2n 的最大整数。例如,⌊log24⌋ = 2,而 ⌊log25⌋ 结果也是 2。


对于任意一个完全二叉树来说,如果将含有的结点按照层次从左到右依次标号(如图 3a)),对于任意一个结点 i ,完全二叉树还有以下几个结论成立:

  1. 当 i>1 时,父亲结点为结点 [i/2] 。(i=1 时,表示的是根结点,无父亲结点)
  2. 如果 2*i>n(总结点的个数) ,则结点 i 肯定没有左孩子(为叶子结点);否则其左孩子是结点 2*i 。
  3. 如果 2*i+1>n ,则结点 i 肯定没有右孩子;否则右孩子是结点 2*i+1 。


二叉树的顺序存储结构(看了无师自通)


二叉树的存储结构有两种,分别为顺序存储和链式存储。本节先介绍二叉树的顺序存储结构


二叉树的顺序存储,指的是使用顺序表(数组)存储二叉树。需要注意的是,顺序存储只适用于完全二叉树。换句话说,只有完全二叉树才可以使用顺序表存储。因此,如果我们想顺序存储普通二叉树,需要提前将普通二叉树转化为完全二叉树。


有读者会说,满二叉树也可以使用顺序存储。要知道,满二叉树也是完全二叉树,因为它满足完全二叉树的所有特征。


普通二叉树转完全二叉树的方法很简单,只需给二叉树额外添加一些节点,将其"拼凑"成完全二叉树即可。如图 1 所示:

image.png

图 1 普通二叉树的转化


图 1 中,左侧是普通二叉树,右侧是转化后的完全(满)二叉树。


解决了二叉树的转化问题,接下来学习如何顺序存储完全(满)二叉树。


完全二叉树的顺序存储,仅需从根节点开始,按照层次依次将树中节点存储到数组即可。

image.png

图 2 完全二叉树示意图


例如,存储图 2 所示的完全二叉树,其存储状态如图 3 所示:

image.png

图 3 完全二叉树存储状态示意图


同样,存储由普通二叉树转化来的完全二叉树也是如此。例如,图 1 中普通二叉树的数组存储状态如图 4 所示:

image.png

图 4 普通二叉树的存储状态


由此,我们就实现了完全二叉树的顺序存储。


不仅如此,从顺序表中还原完全二叉树也很简单。我们知道,完全二叉树具有这样的性质,将树中节点按照层次并从左到右依次标号(1,2,3,...),若节点 i 有左右孩子,则其左孩子节点为 2*i,右孩子节点为 2*i+1。此性质可用于还原数组中存储的完全二叉树,也就是实现由图 3 到图 2、由图 4 到图 1 的转变。


数据结构的树存储结构(下):

目录
相关文章
|
15小时前
|
存储 人工智能 算法
数据结构入门 — 树的概念与结构
数据结构入门 — 树的概念与结构
25 0
|
15小时前
|
数据可视化 前端开发 JavaScript
可视化数据结构——让你的树跃然纸上
可视化数据结构——让你的树跃然纸上
|
15小时前
|
机器学习/深度学习
数据结构-----树的易错点
数据结构-----树的易错点
14 4
|
15小时前
|
存储 算法
实验 2:树形数据结构的实现与应用
实验 2:树形数据结构的实现与应用
5 0
|
15小时前
|
存储 SQL 关系型数据库
关系型数据库数据结构化存储
【5月更文挑战第8天】关系型数据库数据结构化存储
24 6
|
15小时前
|
存储 算法 C++
数据结构/C++:AVL树
数据结构/C++:AVL树
9 2
|
15小时前
|
JSON 数据可视化 Shell
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
数据结构可视化 Graphviz在Python中的使用 [树的可视化]
11 0
|
15小时前
|
存储 缓存 算法
数据结构与算法 树(B树,B+树,红黑树待完善)
数据结构与算法 树(B树,B+树,红黑树待完善)
11 0
|
15小时前
[数据结构]-AVL树
[数据结构]-AVL树
[数据结构]-AVL树
|
15小时前
|
存储 分布式数据库
【数据结构】树和二叉树堆(基本概念介绍)
【数据结构】树和二叉树堆(基本概念介绍)
23 6