基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench

简介: 基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench

1.算法运行效果图预览

eb17250f5550367ce0f6631927d70fc2_82780907_202402281224240524899835_Expires=1709094864&Signature=K3ibPPvdG22weKNTG9dN5Ikb3rg%3D&domain=8.jpeg

其RTL结构如下:

46b816f3d3ccbb6682c0930854c8a503_82780907_202402281224130790766667_Expires=1709094853&Signature=U6hLQbSX6RB8OOc5PNMNFhPRKGw%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

3.算法理论概述
心电图(ECG)是医学领域中常用的一种无创检测技术,用于记录和分析心脏的电活动。由于ECG信号微弱且易受到噪声干扰,因此在采集和处理过程中需要进行滤波以提取有效信息。同时,根据滤波后的ECG信号,可以进一步计算心率等生理参数。现场可编程门阵列(FPGA)以其并行处理能力和可重构性,在ECG信号处理中发挥着重要作用。

3.1 ECG信号的特点与噪声
ECG信号是一种低频、微弱的生物电信号,其频率范围主要集中在0.05Hz至100Hz之间。典型的ECG波形包括P波、QRS波群和T波等。在信号采集过程中,ECG信号容易受到基线漂移、工频干扰、肌电干扰和电极接触噪声等的影响。

3.2 FPGA在ECG信号处理中的应用
FPGA作为一种高性能的数字信号处理器件,可以实现复杂的数字滤波算法,以去除ECG信号中的噪声干扰。常用的数字滤波器包括低通滤波器、高通滤波器和带通滤波器等。

3.3 ECG信号滤波原理
低通滤波器:用于去除高频噪声,如肌电干扰和工频干扰。其数学表达式为:
(H(z) = \sum_{k=0}^{N} bk z^{-k} / \sum{k=0}^{M} a_k z^{-k})

其中,(H(z))为滤波器的传递函数,(b_k)和(a_k)为滤波器的系数,(N)和(M)为滤波器的阶数。

高通滤波器:用于去除基线漂移等低频噪声。其数学表达式与低通滤波器类似,但系数不同。

带通滤波器:结合低通和高通滤波器的特点,仅允许特定频率范围内的信号通过,以提取ECG信号中的有效信息。

3.4 心率计算原理
心率计算通常基于ECG信号中的R波进行检测。R波是ECG信号中幅度最大、最易于识别的波形之一。通过检测R波的间隔时间(RR间期),可以计算出心率。

    心率(HR)的计算公式为:

    (HR = 60 / RR)

    其中,RR为两个相邻R波的时间间隔(以秒为单位)。

   在FPGA中实现心率计算时,通常需要先对滤波后的ECG信号进行阈值检测或峰值检测,以准确识别R波的位置。然后,通过计时器或计数器测量RR间期,并根据上述公式计算心率。

3.5 FPGA在ECG信号处理中的优势
并行处理能力:FPGA可以同时处理多个数据通道,实现高速的ECG信号采集和处理。

可重构性:FPGA可以根据不同的应用需求灵活配置滤波器和心率计算算法。

低功耗:相比其他高性能处理器,FPGA在功耗方面具有优势,适用于便携式医疗设备。

4.部分核心程序

ECG_data ECG_data_u(
    .i_clk (i_clk), 
    .i_rst (i_rst), 
    .o_data(o_data)
    );


//low filter
wire signed[31:0]w_channel_output1;

fir_lower fir_lower_u(
    .aresetn            (~i_rst), // input sclr
    .aclk               (i_clk), // input clk
    .s_axis_data_tvalid (1'b1), // output rfd
    .s_axis_data_tready (),
    .s_axis_data_tdata  ({o_data[11],o_data[11],o_data[11],o_data[11],o_data}), 
    .m_axis_data_tvalid (), 
    .m_axis_data_tdata(w_channel_output1) // output [24 : 0] dout
);
assign o_data_filter1=w_channel_output1[25:10];
//high filter//这里和论文不一样,我再增加一个高频滤波
wire signed[31:0]w_channel_output2;
fir_higher higher_filter_u(
    .aresetn            (~i_rst), // input sclr
    .aclk               (i_clk), // input clk
    .s_axis_data_tvalid (1'b1), // output rfd
    .s_axis_data_tready (),
    .s_axis_data_tdata  ({o_data_filter1}), 
    .m_axis_data_tvalid (), 
    .m_axis_data_tdata(w_channel_output2) // output [24 : 0] dout
);

assign o_data_filter2=w_channel_output2[25:10];

//平均滤波
avg_filters avg_filters_u(
    .i_clk       (i_clk), 
    .i_rst       (i_rst), 
    .i_data      (o_data_filter2), 
    .o_avg_filter(o_data_avgfilter)
    );


//===============================================================
wire[15:0]o_pv2_1;

dyn_lvl dyn_lvl_u(
    .i_clk   (i_clk), 
    .i_rst   (i_rst), 
    .i_agcamp(16'd1500), 
    .i_pv2_1 (o_pv2_1), 
    .o_lvl   (o_lvl)
    );
find_heart_max find_heart_max_u(
    .i_clk      (i_clk), 
    .i_rst      (i_rst), 
    .i_lvl      (o_lvl), 
    .i_peak     (o_data_avgfilter), 

    .o_pv2_1    (o_pv2_1), 
    .o_idx_1    (o_idx_1), 
    .o_delay_cnt(o_delay_cnt), 
    .o_syn      (o_syn), 
    .curr_state (), 
    .cnten      (), 

    .cnt0       (), 
    .cnt1       (), 
    .cnt2       (), 
    .cnt3       (), 
    .cnt4       (), 

    .max_1      (), 
    .max_2      (), 
    .max_3      (), 
    .max_4      ()
    );
assign o_peaks = o_pv2_1;
//计算心率
heart_rate_cal heart_rate_cal_u(
    .i_clk(i_clk), 
    .i_rst(i_rst), 
    .i_heart    (o_syn), 
    .o_heartrate(o_heartrate), 
    .o_heartcnt (o_heartcnt)
    );
endmodule
相关文章
|
9天前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
28 7
|
1月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
29 2
|
5天前
|
算法 计算机视觉 异构计算
基于FPGA的图像累积直方图verilog实现,包含tb测试文件和MATLAB辅助验证
该内容展示了FPGA实现图像累积直方图的算法。使用Vivado2019.2和matlab2022a,通过FPGA的并行处理能力优化图像处理。算法基于像素值累加分布,计算图像中像素值小于等于特定值的像素个数。核心代码为`test_image`模块,读取二进制图像文件并传递给`im_hist`单元,生成直方图和累积直方图。
|
14天前
|
算法 异构计算 Python
m基于FPGA的217卷积编码维特比译码verilog实现,包含testbench不使用IP核
该内容展示了使用Vivado 2019.2进行卷积编码和维特比译码的模拟。提供了编码、译码输出和RTL图的图片,以及Verilog实现的核心代码。卷积编码是一种前向纠错技术,基于生成多项式产生冗余数据;维特比译码利用动态规划恢复原始信息,最小化错误。Verilog程序包含了编码和译码模块,以及输入输出信号的时序操作。
12 0
|
3月前
|
算法 5G 数据处理
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
48 0
|
3月前
|
算法 异构计算 索引
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
45 1
|
5月前
|
算法 测试技术 开发工具
m基于FPGA的2ASK调制解调系统verilog实现,包含testbench测试文件
m基于FPGA的2ASK调制解调系统verilog实现,包含testbench测试文件
53 0
|
5月前
|
测试技术 异构计算
【FPGA基础入门实践】Verilog 基本项目操作逐步演示
【FPGA基础入门实践】Verilog 基本项目操作逐步演示
78 0
|
1月前
|
算法 异构计算
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
16 0
|
1月前
|
算法 异构计算
m基于FPGA的Alamouti编码verilog实现,包含testbench测试文件
m基于FPGA的Alamouti编码verilog实现,包含testbench测试文件
31 5

热门文章

最新文章