m基于FPGA的217卷积编码维特比译码verilog实现,包含testbench不使用IP核

简介: 该内容展示了使用Vivado 2019.2进行卷积编码和维特比译码的模拟。提供了编码、译码输出和RTL图的图片,以及Verilog实现的核心代码。卷积编码是一种前向纠错技术,基于生成多项式产生冗余数据;维特比译码利用动态规划恢复原始信息,最小化错误。Verilog程序包含了编码和译码模块,以及输入输出信号的时序操作。

1.算法仿真效果
Vivado2019.2
db0e1155208774f454316041e970882f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

编码部分:

f52bac1b3977be8c75bf7a68e0142825_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

译码部分输出:

8e1cf763e465f6755444e9be88f79c2d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

RTL图:

901561361b94f8aa22360375092ea807_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
2.1 卷积编码
卷积编码是一种前向纠错编码方式,特别适用于无线通信和其他信道条件恶劣的应用场景。它主要通过卷积算子将信息序列映射成冗余度更高的码字序列。典型的卷积编码器由两个移位寄存器和一个加法器构成,遵循一定的生成多项式进行编码。

   设信息序列是 u(n),卷积编码器的两个生成多项式为 G1​(D) 和 G2​(D),则编码输出v(n) 可以表示为:

v(n)=u(n)G1​(D)+u(n−1)G2​(D)+…

此处D 是延迟算子,实际表达形式取决于具体选择的生成多项式阶数及系数。

2.2 维特比译码
维特比译码是用于最大似然序列估计的一种动态规划算法,广泛应用于卷积编码以及其他序列编码的译码过程中。在卷积编码中,维特比译码器通过构造一棵称为“状态转移图”或“trellis”的树状结构来寻找最有可能的原始信息序列路径。

   在 Viterbi 译码算法中,每一步都需要计算分支量度,路径量度,以及更新幸存路径,同时还需要知道状态转移网格图,时序控制等信息,其原理图如图: 

9fe9e63afce11a8fc09970cd18949d9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   假设维特比译码器面对的是接收到的带有噪声的码字序列y(n),其目标是最小化汉明距离或最大化似然性。维特比算法的核心在于维护每一步的状态概率以及从起始状态到达当前状态的最佳路径累积代价。

  状态转移方程: 对于每个时刻n 和每一个状态Sj​,其下一状态Sk​ 的最佳路径累积代价C(n,Sk​) 可以递归地表示为所有前一状态Sj​ 的累积代价加上相应路径的概率增益:

C(n,Sk​)=Sj​∈prev(Sk​)min​[C(n−1,Sj​)+P(y(n)∣Sk​)]

   其中,prev(Sk​) 表示状态Sk​ 的前驱状态集合,P(y(n)∣Sk​) 是给定当前状态Sk​ 下观测到y(n) 的概率。

   终止状态判决: 译码结束时,选取累积代价最小的终止状态对应的路径作为最优解,回溯此路径即得到最优译码结果。

3.Verilog核心程序
````timescale 1ns / 1ps

// Company:
// Engineer:

//

module TEST;

// Inputs
reg i_clk;
reg i_reset;
reg i_x;

// Outputs
wire [1:0] o_enc;
wire o_dec;
// Instantiate the Unit Under Test (UUT)
conv_217_code uut (
    .i_clk   (i_clk), 
    .i_reset (~i_reset), 
    .i_x     (i_x), 
    .o_enc   (o_enc)
);


conv_217_decode uut2 (
    .i_clk    (i_clk), 
    .i_reset  (~i_reset), 
    .i_enc    (o_enc), 
    .o_dec    (o_dec)
);


always #10 i_clk = ~i_clk;

initial begin
    // Initialize Inputs
    i_clk = 0;
    i_reset = 0;
    i_x = 0;

    // Wait 100 ns for global i_reset to finish
    #100;
  i_reset = 1;  
    // Add stimulus here
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;



end

endmodule
```

相关文章
|
1月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
23 1
|
14天前
|
存储 算法 计算机视觉
m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序
在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。
15 4
|
19天前
|
算法 计算机视觉 异构计算
基于FPGA的图像直方图均衡化处理verilog实现,包含tb测试文件和MATLAB辅助验证
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)
|
1月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
72 7
|
1月前
|
算法 异构计算
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
|
1月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
110 2
|
1月前
|
算法 5G 数据处理
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
64 0
|
1月前
|
算法 异构计算 索引
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
70 1
|
1月前
|
算法 异构计算
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
27 0

热门文章

最新文章