m基于FPGA的217卷积编码维特比译码verilog实现,包含testbench不使用IP核

简介: 该内容展示了使用Vivado 2019.2进行卷积编码和维特比译码的模拟。提供了编码、译码输出和RTL图的图片,以及Verilog实现的核心代码。卷积编码是一种前向纠错技术,基于生成多项式产生冗余数据;维特比译码利用动态规划恢复原始信息,最小化错误。Verilog程序包含了编码和译码模块,以及输入输出信号的时序操作。

1.算法仿真效果
Vivado2019.2
db0e1155208774f454316041e970882f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

编码部分:

f52bac1b3977be8c75bf7a68e0142825_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

译码部分输出:

8e1cf763e465f6755444e9be88f79c2d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

RTL图:

901561361b94f8aa22360375092ea807_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
2.1 卷积编码
卷积编码是一种前向纠错编码方式,特别适用于无线通信和其他信道条件恶劣的应用场景。它主要通过卷积算子将信息序列映射成冗余度更高的码字序列。典型的卷积编码器由两个移位寄存器和一个加法器构成,遵循一定的生成多项式进行编码。

   设信息序列是 u(n),卷积编码器的两个生成多项式为 G1(D)G2(D),则编码输出v(n) 可以表示为:
AI 代码解读

v(n)=u(n)G1​(D)+u(n−1)G2​(D)+…

此处D 是延迟算子,实际表达形式取决于具体选择的生成多项式阶数及系数。

2.2 维特比译码
维特比译码是用于最大似然序列估计的一种动态规划算法,广泛应用于卷积编码以及其他序列编码的译码过程中。在卷积编码中,维特比译码器通过构造一棵称为“状态转移图”或“trellis”的树状结构来寻找最有可能的原始信息序列路径。

   在 Viterbi 译码算法中,每一步都需要计算分支量度,路径量度,以及更新幸存路径,同时还需要知道状态转移网格图,时序控制等信息,其原理图如图: 
AI 代码解读

9fe9e63afce11a8fc09970cd18949d9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   假设维特比译码器面对的是接收到的带有噪声的码字序列y(n),其目标是最小化汉明距离或最大化似然性。维特比算法的核心在于维护每一步的状态概率以及从起始状态到达当前状态的最佳路径累积代价。

  状态转移方程: 对于每个时刻n 和每一个状态Sj​,其下一状态Sk​ 的最佳路径累积代价C(n,Sk​) 可以递归地表示为所有前一状态Sj​ 的累积代价加上相应路径的概率增益:
AI 代码解读

C(n,Sk​)=Sj​∈prev(Sk​)min​[C(n−1,Sj​)+P(y(n)∣Sk​)]

   其中,prev(Sk​) 表示状态Sk​ 的前驱状态集合,P(y(n)∣Sk​) 是给定当前状态Sk​ 下观测到y(n) 的概率。

   终止状态判决: 译码结束时,选取累积代价最小的终止状态对应的路径作为最优解,回溯此路径即得到最优译码结果。
AI 代码解读

3.Verilog核心程序
````timescale 1ns / 1ps

// Company:
// Engineer:

//

module TEST;

// Inputs
reg i_clk;
reg i_reset;
reg i_x;

// Outputs
wire [1:0] o_enc;
wire o_dec;
// Instantiate the Unit Under Test (UUT)
conv_217_code uut (
    .i_clk   (i_clk), 
    .i_reset (~i_reset), 
    .i_x     (i_x), 
    .o_enc   (o_enc)
);


conv_217_decode uut2 (
    .i_clk    (i_clk), 
    .i_reset  (~i_reset), 
    .i_enc    (o_enc), 
    .o_dec    (o_dec)
);


always #10 i_clk = ~i_clk;

initial begin
    // Initialize Inputs
    i_clk = 0;
    i_reset = 0;
    i_x = 0;

    // Wait 100 ns for global i_reset to finish
    #100;
  i_reset = 1;  
    // Add stimulus here
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;

    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 1;
    #20
    i_x = 0;
    #20
    i_x = 0;
    #20
    i_x = 1;
    #20
    i_x = 0;



end
AI 代码解读

endmodule
```

相关文章
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
134 74
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
192 69
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
115 26
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
110 8
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
141 11
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
93 1

热门文章

最新文章