Scikit-Learn 中级教程——学习曲线

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Scikit-Learn 中级教程——学习曲线

Python Scikit-Learn 中级教程:学习曲线

学习曲线是一种评估机器学习模型性能的可视化工具,它可以帮助我们理解模型在不同训练数据大小下的表现。在本篇博客中,我们将深入介绍学习曲线的概念,并使用 Scikit-Learn 中的工具绘制学习曲线。

1. 为什么需要学习曲线?

学习曲线有助于回答以下问题:

  • 模型的性能如何随着训练数据的增加而变化?
  • 是否存在过拟合或欠拟合的现象?
  • 增加更多的训练数据是否有助于提高模型性能?
  • 通过分析学习曲线,我们能够更好地了解模型的训练状态,并做出优化决策。

2. 如何绘制学习曲线?

Scikit-Learn 中的 learning_curve 函数可以用于绘制学习曲线。下面是一个简单的例子:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC

# 加载手写数字数据集
digits = load_digits()

# 定义支持向量机模型
model = SVC(kernel='linear')

# 绘制学习曲线
train_sizes, train_scores, test_scores = learning_curve(model, digits.data, digits.target, cv=5, train_sizes=np.linspace(0.1, 1.0, 10))

# 计算训练集和测试集得分的均值和标准差
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

# 绘制学习曲线图
plt.figure(figsize=(10, 6))
plt.plot(train_sizes, train_scores_mean, label='训练集得分', marker='o')
plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2)
plt.plot(train_sizes, test_scores_mean, label='测试集得分', marker='o')
plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2)
plt.xlabel('训练样本数量')
plt.ylabel('得分')
plt.legend()
plt.title('学习曲线')
plt.show()

3. 学习曲线的解读

学习曲线通常包括训练集和测试集的得分曲线,以及它们的标准差区域。在解读学习曲线时,需要注意以下几点:

  • 欠拟合(High Bias)的模型:训练集和测试集得分都很低,增加训练数据量可能无法显著提高模型性能。

  • 过拟合(High Variance)的模型:训练集得分很高,但测试集得分较低,增加训练数据量可能有助于提高模型性能。

  • 合适的模型:训练集和测试集得分都相对较高,且两者的得分差距较小,说明模型拟合得较好。

4. 总结

学习曲线是一个强大的工具,可以帮助我们更好地理解模型在不同训练数据大小下的表现。通过分析学习曲线,我们可以判断模型是否存在欠拟合或过拟合,并据此调整模型或数据。希望本篇博客对你理解和绘制学习曲线有所帮助!

目录
相关文章
|
2月前
|
算法 IDE 测试技术
python学习需要注意的事项
python学习需要注意的事项
179 57
|
2月前
|
JSON 数据安全/隐私保护 数据格式
拼多多批量下单软件,拼多多无限账号下单软件,python框架仅供学习参考
完整的拼多多自动化下单框架,包含登录、搜索商品、获取商品列表、下单等功能。
|
2月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
2月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
123 0
|
1月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
3月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
225 1
|
3月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
138 0
|
11月前
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
763 13
|
11月前
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
130 9

推荐镜像

更多