🍊 内存淘汰策略
当Redis的内存达到最大容量限制时,新的数据将先从内存中筛选一部分旧数据以腾出空间,从而导致写操作的延迟。这是由内存淘汰策略所决定的。
常见的两种策略为淘汰最少访问的键(LFU)和淘汰最长时间未访问的键(LRU)。
- LRU策略可能导致最近一段时间的访问数据未被访问而突然成为热点数据。
- LFU策略可能导致前一段时间访问次数很多,但最近一段时间未被访问,导致冷数据无法被淘汰。
尽管LFU策略的性能优于LRU策略,但具体选择哪种策略需要根据实际业务进行调整。对于商品搜索和热门推荐等场景,通常只有少量数据被访问,大部分数据很少被访问,可以使用LFU策略。对于用户最近访问的页面数据可能会被二次访问的场景,则适合使用LRU策略。
除了选择淘汰策略外,还可以通过拆分多个实例或横向扩展来分散淘汰过期键的压力。
如果效果仍不理想,开发者可以编写淘汰过期键功能,设置定时任务,在凌晨不繁忙时段主动触发淘汰,删除过期键。
🍊 碎片整理
Redis存储在内存中必然会出现频繁修改的情况,而频繁的修改Redis数据会导致Redis出现内存碎片,从而导致Redis的内存使用率减低。
通常情况下在4.0以下版本的Redis只能通过重启解决内存碎片,而4.0及以上版本可以开启碎片自动整理解决,只不过碎片整理是在
主线程中完成的,通用先对延时范围和时间进行评估,然后在机器负载不高同时业务不繁忙时开启内存碎片整理,避免影响客户端请求。
开启内存自动碎片整理配置如下:
# 已启用活动碎片整理 activedefrag yes # 启动活动碎片整理所需的最小碎片浪费量 active-defrag-ignore-bytes 100mb # 启动活动碎片整理的最小碎片百分比 active-defrag-threshold-lower 10 # 使用最大努力的最大碎片百分比 active-defrag-threshold-upper 100 # 以CPU百分比表示的碎片整理工作量最小 active-defrag-cycle-min 5 # 以CPU百分比表示的碎片整理最大工作量 active-defrag-cycle-max 75 # 将从主字典扫描中处理的集合/哈希/zset/列表字段的最大数目 active-defrag-max-scan-fields 1000
🍊 内存大页
自Linux内核2.6.38版本起,Redis可申请以2MB为单位的内存,从而降低内存分配次数,提高效率。然而,由于每次分配的内存单位增大,处理时间也相应增加。在进行RDB和AOF持久化时,Redis主进程先创建子进程,子进程将内存快照写入磁盘,而主进程继续处理写请求。数据变动时,主进程将新数据复制到一块新内存,并修改该内存块。
读写分离设计允许并发写入,无需加锁,但在主进程上进行内存复制和申请新内存会增加处理时间,影响性能。大key可能导致申请更大的内存和更长的处理时间。根据项目实际情况,关闭Redis部署机器上的内存大页机制以提高性能是一种不错的选择。
🍊 数据持久化与AOF刷盘
Redis提供三种持久化方式:RDB快照、AOF日志和混合持久化。默认使用RDB快照。
(1)RDB快照:周期性生成dump.rdb文件,主线程fork子线程,子线程处理磁盘IO,处理RDB快照,主线程fork线程的过程可能会阻塞主线程,主线程内存越大阻塞越久,可能导致服务暂停数秒。
(2)AOF日志:每条写入命令追加,回放日志重建数据。文件过大时,会去除没用的指令,定期根据内存最新数据重新生成aof文件。默认1秒执行一次fsync操作,最多丢失1秒数据。在AOF刷盘时,如果磁盘IO负载过高,fsync可能会阻塞主线程,主线程继续接收写请求,把数据写到文件内存里面,写操作需要等fsync执行完才可以继续执行。
(3)混合持久化:RDB快照模式恢复速度快,但可能丢失部分数据。AOF日志文件通常比RDB数据快照文件大,支持的写QPS较低。将两种持久化模式混合使用,AOF保证数据不丢失,RDB快速数据恢复,混合持久化重写时,将内存数据转换为RESP命令写入AOF文件,结合RDB快照和增量AOF修改。新文件一开始不叫appendonly.aof,重写完成后改名,覆盖原有AOF文件。先加载RDB,再重放AOF。
三种持久化方式都存在问题:fork操作可能阻塞主线程;磁盘IO负载过大时,fork阻塞影响AOF写入文件内存。
原因:fork创建的子进程复制父进程的空间内存页表,fork耗时跟进程总内存量有关,OPS越高耗时越明显。
解决方案:
(1)可以通过info stats命令查看latest_fork_usec指标观察最近一次fork操作耗时进行问题辅助定位。
(2)减少fork频率,根据实际情况适当地调整AOF触发条件
(3)Linux内存分配策略默认配置是vm.overcommit_memory=0,表示内存不足时,不会分配,导致fork阻塞。改成1,允许过量使用,直到内存用完为止。
(4)评估Redis最大可用内存,让机器至少有20%的闲置内存。
(5)定位占用磁盘IO较大的应用程序,将该应用程序移到其他机器上去,减少对Redis影响。
(6)资金充足情况下,更换高性能的SSD磁盘,从硬件层面提高磁盘IO处理能力。
(7)配置no-appendfsync-on-rewrite none表示AOF写入文件内存时,不触发fsync,不执行刷盘。这种调整有一定风险,如果Redis在AOF写入文件内存时刚好挂了,存在数据丢失情况。
🍊 丢包/中断/CPU亲和性
网络因素有以下问题:
(1)网络宽带和流量是否瓶颈、数据传输延迟和丢包情况、是否频繁短连接(如TCP创建和断开)
(2)数据丢包情况:数据丢包通常发生在网卡设备驱动层面,网卡收到数据包,将数据包从网卡硬件缓存转移到服务器内存中,通知内核处理,经过TCP/IP协议校验、解析、发送给上层协议,应用程序通过read系统调用从socket buffer将新数据从内核区拷贝到用户区读取数据。
TCP能动态调整接收窗口大小,不会出现由于socket buffer接收队列空间不足而丢包的情况。
然而在高负载压力下,网络设备的处理性能达到硬件瓶颈,网络设备和内核资源出现竞争和冲突,网络协议栈无法有效地处理和转发数据包,传输速度受限,而Linux使用缓冲区来缓存接收到的数据包,大量数据包涌入内核缓冲区,可能导致缓冲区溢出,进而影响数据包的处理和传输,内核无法处理所有收到的数据包,处理速度跟不上收包速度,导致数据包丢失。
(3)Redis的数据通常存储在内存中,通过网络和客户端进行交互。在这个过程中,Redis可能会受到中断的影响,因为中断可能会打断Redis的正常执行流程。当CPU正在处理Redis的调用时,如果发生了中断,CPU必须停止当前的工作转而处理中断请求。在处理中断的过程中,Redis无法继续运行,必须等待中断处理完毕后才能继续运行。这会导致Redis的响应速度受到影响,因为在等待中断处理的过程中,Redis无法响应其他请求。
(4)在NUMA架构中,每个CPU内核对应一个NUMA节点。中断处理和网络数据包处理涉及多个CPU内核和NUMA节点。Linux内核使用softnet_data数据结构跟踪网络数据包的处理状态,以实现更高效的数据处理和调度。在处理网络数据包时,内核首先在softnet_data中查找相关信息,然后根据这些信息执行相应操作,如发送数据包、重新排序数据包等。
网络驱动程序使用内核分配的缓冲区(sk_buffer)存储和处理网络数据包,当网络设备收到数据包时,会向驱动程序发送中断信号,通知其处理新数据包。驱动程序从设备获取数据包,并将其添加到sk_buffer缓冲区。内核会继续处理sk_buffer中的数据包,如根据协议类型进行分拣、转发或丢弃等。
softnet_data和sk_buffer缓冲区都可能跨越NUMA节点,在数据接收过程中,数据从NUMA节点的一个节点传递到另一个节点时,由于数据跨越了不同的节点,不仅无法利用L2和L3缓存还需要在节点之间进行数据拷贝,导致数据在传输过程中的额外开销,进而增加了传输时间和响应时间,性能下降。
(5)Linux的CPU亲和性特性也会影响进程的调度。当一个进程唤醒另一个的时候,被唤醒的进程可能会被放到相同的CPU core或者相同的NUMA节点上。当多个NUMA node处理中断时,可能导致Redis进程在CPU core之间频繁迁移,造成性能损失。
解决方案:
(1)升级网络设备或增加网络设备的数量,以提高网络处理能力和带宽。
(2)适当调整Linux内核缓冲区的大小,以平衡网络处理能力和数据包丢失之间的关系。
(3)将中断都分配到同一NUMA Node中,中断处理函数和Redis利用同NUMA下的L2、L3缓存、同节点下的内存,降低延迟。
(4)结合Linux的CPU亲和性特性,将任务或进程固定到同一CPU内核上运行,提高系统性能和效率,保证系统稳定性和可靠性。
注意:在Linux系统中NUMA亲和性可以指定在哪个NUMA节点上运行,Redis在默认情况下并不会自动将NUMA亲和性配置应用于实例部署,通常情况下通过使用Kubernetes等容器编排工具,调整节点亲和性策略或使用pod亲和性和节点亲和性规则来控制Redis实例在特定NUMA节点上运行。或者在手动部署Redis实例时,使用Linux系统中的numactl命令来查看和配置NUMA节点信息,将Redis实例部署在某个NUMA节点上。如果是在虚拟化环境中,使用NUMA aware虚拟机来部署Redis实例,让它在指定的NUMA节点上运行。
(5)添加网络流量阈值预警,超限时通知运维人员,及时扩容。
(6)编写监控脚本,正确配置和使用监控组件,使用长连接收集Redis状态信息,避免短连接。
(7)为Redis机器分配专用资源,避免其他程序占用。
🍊 操作系统Swap与主从同步
Redis突然变得很慢,需要考虑Redis是否使用操作系统的Swap以缓解内存不足的影响,它允许把部分内存数据存储到磁盘上,而访问磁盘速度比访问内存慢很多,所以操作系统的Swap对Redis的延时是无法接受的。
解决方案:
(1)适当增加Redis服务器的内存
(2)对Redis的内存碎片进行整理
(3)同时当Redis内存不足或者使用了Swap时,通过邮件、短信、微信等渠道通知运维人员及时处理
(4)主从架构的Redis在释放Swap前先将主节点切换至新主节点,旧主节点释放Swap后重启,待从库数据完全同步后再行主从切换,以避免影响应用程序正常运行。
在主从架构数据同步过程中,可能因网络中断或IO异常导致连接中断。建议使用支持数据断点续传的2.8及以上版本,以避免对整份数据进行复制,降低性能浪费。
🍊 监控
在Redis的监控中,有两种推荐的体系:ELK和Fluent + Prometheus + Grafana。
ELK体系通常使用metricbeat作为指标采集,logstash作为收集管道,并通过可视化工具kibana来呈现数据。ElasticSearch用于存储监控数据。
Fluent + Prometheus + Grafana体系则使用redis-eport作为指标采集,fluentd作为采集管道,并通过可视化工具Grafana来展示数据。Prometheus用于存储监控数据。
这两种监控体系都可以获取Redis的各项指标,并对数据进行持续化存储和对比。可视化工具使得开发者和运维人员能够更清晰地观察Redis集群的运行状况,如内存消耗、集群信息、请求键命中率、客户端连接数、网络指标、内存监控等。此外,它们都支持预警机制,例如设置慢查询日志阈值来监控慢日志个数和最长耗时,超出阈值则通过短信、微信、邮件等方式进行报警通知。这样,有了监控系统后,就可以快速发现问题、定位故障,并协助运维人员进行资源规划、性能观察等操作。
🍊 高可用
上述提到的主从同步和哨兵机制可以保证Redis服务的高可用,还有多级缓存、冷热分离可以保证高可用。
商品详情页在电商平台的秒杀场景中,涉及商品信息的动态展示和高并发访问,需要通过一系列手段保证系统的高并发和高可用,通过采用Nginx+Lua架构、CDN缓存、本地应用缓存和分布式缓存等多种技术手段,实现了商品详情页的动态化和缓存优化,提高用户访问商品详情页的速度和体验。同时,通过开关前置化和缓存过期机制,确保了缓存数据的有效性,降低了对后端数据库的访问压力。
🎉 主从同步和哨兵机制
主从复制通常采用异步方式,可能导致主节点数据尚未完全复制至从节点,主节点便已故障,导致数据丢失。因此,需要控制复制数据的时长和ACK延迟,降低数据丢失风险。
主从切换过程通常使用哨兵机制。但在主节点正常运行时,可能因与某从节点连接中断,哨兵误判主节点已故障。在此情况下,哨兵可能启动选举,将某从节点升级为主节点,导致集群出现两个主节点,发生脑裂。旧主节点恢复网络后,将被升级为从节点并挂载至新主节点,导致自身数据丢失,并需从新主节点复制数据。而新主节点并未包含后续客户端写入的数据,导致这些数据丢失。为降低数据丢失风险,可设置连接主节点最少的从节点数量和从节点连接主节点最大的延迟时间,若主节点与从节点断开连接,且从节点超过阈值时间未收到ACK消息,则拒绝客户端的写请求,将数据丢失控制在可控范围。
🎉 多级缓存
Java多级缓存是一种常见的优化策略,可以有效地提高系统的性能和响应速度。
📝 1.浏览器缓存
在页面间跳转时,从本地缓存获取数据;或在打开新页面时,根据Last-Modified头来CDN验证数据是否过期,减少数据传输量。
CDN缓存当用户点击商品图片或链接时,从最近的CDN节点获取数据,而非回源到北京机房,提升访问性能。
📝 2.服务端应用本地缓存
采用Nginx+Lua架构,通过HttpLuaModule模块的shared dict或内存级Proxy Cache来减少带宽。
📝 3.一致性哈希
在电商场景中,使用商品编号/分类作为哈希键,提高URL命中率。
📝 4.mget优化
根据商品的其他维度数据(如分类、面包屑、商家等),先从本地缓存读取,如不命中则从远程缓存获取。这个优化减少了一半以上的远程缓存流量。
📝 5.服务端缓存
(1)将缓存存储在内存、SSD和JIMDB中,实现读写性能和持久化的平衡。
(2)对热门商品和访问量较大的页面进行缓存,降低数据库压力。
(3)使用Nignx缓存:存储数据量少但访问量高的热点数据,例如双11或者618活动。
(4)使用JVM本地缓存:存储数据量适中访问量高的热点数据,例如网站首页数据。
(5)使用Redis缓存:存储数据量很大,访问量较高的普通数据,例如商品信息。
📝 6.商品详情页数据获取
(1)用户打开商品详情页时,先从本地缓存获取基本数据,如商品ID、商品名称和价格等。
(2)根据用户浏览历史和搜索记录,动态加载其他维度数据,如分类、商家信息和评论等。
📝 7.Nginx+Lua架构
(1)使用Nginx作为反向代理和负载均衡器,将请求转发给后端应用。
(2)使用Lua脚本实现动态页面渲染,并对商品详情页数据进行缓存。
(3)重启应用秒级化,重启速度快,且不会丢失共享字典缓存数据。
(4)需求上线速度化,可以快速上线和重启应用,减少抖动。
(5)在Nginx上做开关,设置缓存过期时间,当缓存数据过期时,强制从后端应用获取最新数据,并更新缓存。
🎉 冷热分离
冷热分离的具体步骤:
(1)分析现有系统的数据类型和访问模式,了解各类数据的冷热程度。
(2)确定合适的冷热分离策略和方案,以优化数据存储和管理。
(3)设计冷热分离架构,为热数据和冷数据选择合适的存储介质、存储策略以及数据同步机制。
(4)将冷数据从热存储介质迁移到冷存储介质,可以采用全量迁移和增量迁移的方式。
(5)对热数据进行有效管理,包括访问控制、数据安全、性能监控等,以确保数据的安全性和可用性。
(6)对冷数据进行持久化、备份、归档等操作,以防止数据丢失并确保数据的可恢复性。
(7)设计合适的故障转移和恢复策略,如主从复制、多副本存储、故障检测与恢复等,以确保系统在故障或恢复时的稳定运行。
(8)在冷热分离后对系统性能进行优化,包括优化热存储介质的性能监控、调整存储结构、调整缓存策略等。
(9)持续监控数据同步、性能指标、故障排查与修复,确保系统的稳定运行。
以实际案例进行说明:
案例1:在线购物网站的商品库存管理系统
(1)热数据:用户频繁访问的商品信息,如商品名称、价格、库存量等,需要快速响应和低延迟。
(2)冷数据:用户访问较少的商品信息,对响应速度要求较低,但对数据安全和完整性要求较高。如商品的详细描述、评价、历史价格等。
案例2:在线音乐平台的曲库管理系统
(1)热数据:用户经常访问的热门歌曲,如排行榜前10名、新上架的歌曲等,存储在高速且高可靠性的SSD硬盘Redis缓存中,以确保快速的数据访问和响应速度。
(2)冷数据:用户较少访问的歌曲,如过时的经典歌曲、小众音乐等,存储在低成本且大容量的存储介质(HDFS、Ceph、S3)中,以节省成本并存储大量历史数据。
案例3:在线求职招聘网站的职位信息管理系统
(1)热数据:用户经常访问的热门职位信息,如招聘需求高的职位、高薪职位、职位信息的基本描述、薪资范围、投递人数等。
(2)冷数据:用户较少访问的职位信息,如停招职位的详细描述、过期职位、历史招聘情况等。
小结:
在冷数据(如历史数据、归档数据等)存储场景中,使用RocksDB作为Key-Value分布式存储引擎,存储大量数据,进行数据备份和恢复,以确保在故障或系统恢复时能够快速恢复数据,节省成本并提高存储空间利用率。
在热数据(如实时更新的数据、用户操作日志等)存储场景中,使用Redis缓存支持各种高并发场景,提升响应速度。
通过以上步骤,可以有效地对冷热数据进行分离,从而实现更高效、更安全的数据存储和管理。
🎉 缓存雪崩、穿透、击穿、热点缓存重构、缓存失效
从前,有一个叫做小明的程序员,他的网站被越来越多的用户访问,于是他决定使用Redis缓存来提高网站性能。
一天,大雪纷飞,小明的服务器突然停机了。当服务器重新启动后,所有的缓存都失效了。这就是Redis缓存雪崩的场景。
为了避免Redis缓存雪崩,小明决定使用多级缓存和缓存预热等技术手段。他设置了多个Redis实例,同时监听同一个缓存集群。当一个实例出现问题时,其他实例可以顶替它的功能。并且,他在低访问时间段主动向缓存中写入数据,以提前预热缓存。
然而,小明并没有想到缓存穿透的问题。有些用户在请求缓存中不存在的数据时,会频繁地向数据库查询,从而拖慢服务器响应时间。这就是Redis缓存穿透的场景。
为了避免Redis缓存穿透,小明决定使用布隆过滤器等技术手段。布隆过滤器可以高效地过滤掉不存在的数据,从而减少数据库查询次数。
不久之后,小明又遇到了缓存击穿的问题。某一个热门商品被多个用户同时请求,导致缓存无法承受压力,最终请求直接打到了数据库。这就是Redis缓存击穿的场景。
为了避免Redis缓存击穿,小明决定使用分布式锁等技术手段。分布式锁可以保证同一时间只有一个用户请求数据库,避免了缓存被高并发压垮的情况。
最后,小明遇到了缓存热点重构的问题。某一个商品的热度突然升高,导致缓存集中在这个商品上,其他商品的缓存无法承受压力。这就是缓存热点重构的场景。
为了避免缓存热点重构,小明决定使用数据预热等技术手段。他在缓存中设置过期时间,同时在低访问时间段主动重构热点商品的缓存,以避免缓存集中在某一个商品上。
技术解决方案和手段:
(1)多级缓存和缓存预热:适用于缓存雪崩场景,可以提前将数据存储到缓存中,避免缓存雪崩。
(2)布隆过滤器:适用于缓存穿透场景,可以高效地过滤不存在的数据,减少数据库查询次数。
(3)分布式锁:适用于缓存击穿场景,可以保证同一时间只有一个用户请求数据库,避免了缓存被高并发压垮的情况。
(4)数据预热:适用于缓存热点重构场景,可以在低访问时间段主动重构热点商品的缓存,避免缓存集中在某一个商品上。
优缺点对比:
(1)多级缓存和缓存预热:优点是能够提前将数据存储到缓存中,避免缓存雪崩;缺点是需要占用更多的内存空间,同时预热时间过长可能会拖慢服务器响应速度。
(2)布隆过滤器:优点是可以高效地过滤不存在的数据,减少数据库查询次数;缺点是无法完全避免缓存穿透,同时需要占用一定的内存空间。
(3)分布式锁:优点是可以保证同一时间只有一个用户请求数据库,避免了缓存被高并发压垮的情况;缺点是会增加系统的复杂度,可能引入单点故障等问题。
(4)数据预热:优点是可以避免缓存热点重构的问题;缺点是需要占用更多的内存空间,同时需要在低访问时间段主动重构缓存。
总之,不同的技术解决方案和手段都有其优缺点。程序员需要根据实际情况选择适合自己的方案,并且不断地优化和改进,以提高系统的性能和稳定性。
🌟 消息中间件调优
🍊 三种mq对比
使用消息队列有解耦,扩展性,削峰,异步等功能,市面上主流的几款mq,rabbitmq,rocketmq,kafka有各自的应用场景。kafka,有出色的吞吐量,比较强悍的性能,而且集群可以实现高可用,就是会丢数据,所以一般被用于日志分析和大数据采集。rabbitmq,消息可靠性比较高,支持六种工作模式,功能比较全面,但是由于吞吐量比较低,消息累积还会影响性能,加上erlang语言不好定制,所以一般使用于小规模的场景,大多数是中小企业用的比较多。rocketmq,高可用,高性能,高吞吐量,支持多种消息类型,比如同步,异步,顺序,广播,延迟,批量,过滤,事务等等消息,功能比较全面,只不过开源版本比不上商业版本的,加上开发这个中间件的大佬写的文档不多,文档不太全,这也是它的一个缺点,不过这个中间件可以作用于几乎全场景。
🍊 消息丢失
消息丢失,生产者往消息队列发送消息,消息队列往消费者发送消息,会有丢消息的可能,消息队列也有可能丢消息,通常MQ存盘时都会先写入操作系统的缓存页中,然后再由操作系统异步的将消息写入硬盘,这个中间有个时间差,就可能会造成消息丢失,如果服务挂了,缓存中还没有来得及写入硬盘的消息就会发生消息丢失。
不同的消息中间件对于消息丢失也有不同的解决方案,先说说最容易丢失消息的kafka吧。生产者发消息给Kafka Broker:消息写入Leader后,Follower是主动与Leader进行同步,然后发ack告诉生产者收到消息了,这个过程kafka提供了一个参数,request.required.acks属性来确认消息的生产。
0表示不进行消息接收是否成功的确认,发生网络抖动消息丢了,生产者不校验ACK自然就不知道丢了。
1表示当Leader接收成功时确认,只要Leader存活就可以保证不丢失,保证了吞吐量,但是如果leader挂了,恰好选了一个没有ACK的follower,那也丢了。
-1或者all表示Leader和Follower都接收成功时确认,可以最大限度保证消息不丢失,但是吞吐量低,降低了kafka的性能。一般在不涉及金额的情况下,均衡考虑可以使用1,保证消息的发送和性能的一个平衡。
Kafka Broker 消息同步和持久化:Kafka通过多分区多副本机制,可以最大限度保证数据不会丢失,如果数据已经写入系统缓存中,但是还没来得及刷入磁盘,这个时候机器宕机,或者没电了,那就丢消息了,当然这种情况很极端。Kafka Broker 将消息传递给消费者:如果消费这边配置的是自动提交,万一消费到数据还没处理完,就自动提交offset了,但是此时消费者直接宕机了,未处理完的数据丢失了,下次也消费不到了。所以为了避免这种情况,需要将配置改为,先消费处理数据,然后手动提交,这样消息处理失败,也不会提交成功,没有丢消息。
rabbitmq整个消息投递的路径是producer—>rabbitmq broker—>exchange—>queue—>consumer。
生产者将消息投递到Broker时产生confirm状态,会出现二种情况,ack:表示已经被Broker签收。nack:表示表示已经被Broker拒收,原因可能有队列满了,限流,IO异常等。生产者将消息投递到Broker,被Broker签收,但是没有对应的队列进行投递,将消息回退给生产者会产生return状态。
这二种状态是rabbitmq提供的消息可靠投递机制,生产者开启确认模式和退回模式。使用rabbitTemplate.setConfirmCallback设置回调函数。当消息发送到exchange后回调confirm方法。在方法中判断ack,如果为true,则发送成功,如果为false,则发送失败,需要处理。
使用rabbitTemplate.setReturnCallback设置退回函数,当消息从exchange路由到queue失败后,如果设置了rabbitTemplate.setMandatory(true)参数,则会将消息退回给producer。消费者在rabbit:listener-container标签中设置acknowledge属性,设置ack方式 none:自动确认,manual:手动确认。
none自动确认模式很危险,当生产者发送多条消息,消费者接收到一条信息时,会自动认为当前发送的消息已经签收了,这个时候消费者进行业务处理时出现了异常情况,也会认为消息已经正常签收处理了,而队列里面显示都被消费掉了。所以真实开发都会改为手动签收,可以防止消息丢失。
消费者如果在消费端没有出现异常,则调用channel.basicAck方法确认签收消息。消费者如果出现异常,则在catch中调用 basicNack或 basicReject,拒绝消息,让MQ重新发送消息。通过一系列的操作,可以保证消息的可靠投递以及防止消息丢失的情况。
然后说一下rocketmq,生产者使用事务消息机制保证消息零丢失,第一步就是确保Producer发送消息到了Broker这个过程不会丢消息。发送half消息给rocketmq,这个half消息是在生产者操作前发送的,对下游服务的消费者是不可见的。这个消息主要是确认RocketMQ的服务是否正常,通知RocketMQ,马上要发一个消息了,做好准备。
half消息如果写入失败就认为MQ的服务是有问题的,这个时候就不能通知下游服务了,给生产者的操作加上一个状态标记,然后等待MQ服务正常后再进行补偿操作,等MQ服务正常后重新下单通知下游服务。
然后执行本地事务,比如说下了个订单,把下单数据写入到mysql,返回本地事务状态给rocketmq,在这个过程中,如果写入数据库失败,可能是数据库崩了,需要等一段时间才能恢复,这个时候把订单一直标记为"新下单"的状态,订单的消息先缓存起来,比如Redis、文本或者其他方式,然后给RocketMQ返回一个未知状态,未知状态的事务状态回查是由RocketMQ的Broker主动发起的,RocketMQ过一段时间来回查事务状态,在回查事务状态的时候,再尝试把数据写入数据库,如果数据库这时候已经恢复了,继续后面的业务。
而且即便这个时候half消息写入成功后RocketMQ挂了,只要存储的消息没有丢失,等RocketMQ恢复后,RocketMQ就会再次继续状态回查的流程。
第二步就是确保Broker接收到的消息不会丢失,因为RocketMQ为了减少磁盘的IO,会先将消息写入到os缓存中,不是直接写入到磁盘里面,消费者从os缓存中获取消息,类似于从内存中获取消息,速度更快,过一段时间会由os线程异步的将消息刷入磁盘中,此时才算真正完成了消息的持久化。在这个过程中,如果消息还没有完成异步刷盘,RocketMQ中的Broker宕机的话,就会导致消息丢失。
所以第二步,消息支持持久化到Commitlog里面,即使宕机后重启,未消费的消息也是可以加载出来的。把RocketMQ的刷盘方式 flushDiskType配置成同步刷盘,一旦同步刷盘返回成功,可以保证接收到的消息一定存储在本地的内存中。采用主从机构,集群部署,Leader中的数据在多个Follower中都存有备份,防止单点故障,同步复制可以保证即使Master 磁盘崩溃,消息仍然不会丢失。但是这里还会有一个问题,主从结构是只做数据备份,没有容灾功能的。也就是说当一个master节点挂了后,slave节点是无法切换成master节点继续提供服务的。
所以在RocketMQ4.5以后的版本支持Dledge,DLedger是基于Raft协议选举Leader Broker的,当master节点挂了后,Dledger会接管Broker的CommitLog消息存储 ,在Raft协议中进行多台机器的Leader选举,发起一轮一轮的投票,通过多台机器互相投票选出来一个Leader,完成master节点往slave节点的消息同步。
数据同步会通过两个阶段,一个是uncommitted阶段,一个是commited阶段。Leader Broker上的Dledger收到一条数据后,会标记为uncommitted状态,然后他通过自己的DledgerServer组件把这个uncommitted数据发给Follower Broker的DledgerServer组件。
接着Follower Broker的DledgerServer收到uncommitted消息之后,必须返回一个ack给Leader Broker的Dledger。然后如果Leader Broker收到超过半数的Follower Broker返回的ack之后,就会把消息标记为committed状态。再接下来, Leader Broker上的DledgerServer就会发送committed消息给Follower Broker上的DledgerServer,让他们把消息也标记为committed状态。这样,就基于Raft协议完成了两阶段的数据同步。
第三步,Cunmser确保拉取到的消息被成功消费,就需要消费者不要使用异步消费,有可能造成消息状态返回后消费者本地业务逻辑处理失败造成消息丢失的可能。用同步消费方式,消费者端先处理本地事务,然后再给MQ一个ACK响应,这时MQ就会修改Offset,将消息标记为已消费,不再往其他消费者推送消息,在Broker的这种重新推送机制下,消息是不会在传输过程中丢失的。