数据结构和算法

简介: 数据结构是为实现对计算机数据有效使用的各种数据组织形式,服务于各类计算机操作。不同的数据结构具有各自对应的适用场景,旨在降低各种算法计算的时间与空间复杂度,达到最佳的任务执行效率。

数据结构


一、简介

数据结构是为实现对计算机数据有效使用的各种数据组织形式,服务于各类计算机操作。不同的数据结构具有各自对应的适用场景,旨在降低各种算法计算的时间与空间复杂度,达到最佳的任务执行效率。

常见的数据结构可分为「线性数据结构」与「非线性数据结构」,具体为:「数组」、「链表」、「栈」、「队列」、「树」、「图」、「散列表」、「堆」


1.数组

数组是将相同类型的元素存储于连续内存空间的数据结构,其长度不可变。

构建此数组需要在初始化时给定长度,并对数组每个索引元素赋值,代码如下:

// 初始化一个长度为 5 的数组 array
int array[5];
// 元素赋值
array[0] = 2;
array[1] = 3;
array[2] = 1;
array[3] = 0;
array[4] = 2;

「可变数组」是经常使用的数据结构,其基于数组和扩容机制实现,相比普通数组更加灵活。常用操作有:访问元素、添加元素、删除元素。

// 初始化可变数组
vector<int> array;
// 向尾部添加元素
array.push_back(2);
array.push_back(3);
array.push_back(1);
array.push_back(0);
array.push_back(2);

2.链表

链表以节点为单位,每个元素都是一个独立对象,在内存空间的存储是非连续的。链表的节点对象具有两个成员变量:「值 val」,「后继节点引用 next」 。

struct ListNode {
    int val;        // 节点值
    ListNode *next; // 后继节点引用
    ListNode(int x) : val(x), next(NULL) {}
};

如下所示,建立此链表需要实例化每个节点,并构建各节点的引用指向。

// 实例化节点
ListNode *n1 = new ListNode(4); // 节点 head
ListNode *n2 = new ListNode(5);
ListNode *n3 = new ListNode(1);
// 构建引用指向
n1->next = n2;
n2->next = n3;

3.栈

栈是一种具有 「先入后出」 特点的抽象数据结构,可使用数组或链表实现。

stack<int> stk;

如下所示,通过常用操作「入栈 push()」,「出栈 pop()」,展示了栈的先入后出特性。

stk.push(1); // 元素 1 入栈
stk.push(2); // 元素 2 入栈
stk.pop();   // 出栈 -> 元素 2
stk.pop();   // 出栈 -> 元素 1

4.队列

队列是一种具有 「先入先出」 特点的抽象数据结构,可使用链表实现。

queue<int> que;

如下所示,通过常用操作「入队 offer()」,「出队 poll()」,展示了队列的先入先出特性。

que.push(1); // 元素 1 入队
que.push(2); // 元素 2 入队
que.pop();   // 出队 -> 元素 1
que.pop();   // 出队 -> 元素 2

5.树

树是一种非线性数据结构,根据子节点数量可分为 「二叉树」 和 「多叉树」,最顶层的节点称为「根节点root」。以二叉树为例,每个节点包含三个成员变量:「值 val」、「左子节点 left」、「右子节点 right」 。

struct TreeNode {
    int val;         // 节点值
    TreeNode *left;  // 左子节点
    TreeNode *right; // 右子节点
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

如下所示,建立此二叉树需要实例化每个节点,并构建各节点的引用指向。

// 初始化节点
TreeNode *n1 = new TreeNode(3); // 根节点 root
TreeNode *n2 = new TreeNode(4);
TreeNode *n3 = new TreeNode(5);
TreeNode *n4 = new TreeNode(1);
TreeNode *n5 = new TreeNode(2);
// 构建引用指向
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

6.图

图是一种非线性数据结构,由「节点(顶点)vertex」和「边 edge」组成,每条边连接一对顶点。根据边的方向有无,图可分为「有向图」和「无向图」。本文 以无向图为例 开展介绍。

无向图的 顶点 和 边 集合分别为:

顶点集合: vertices = {1, 2, 3, 4, 5}

边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}

表示图的方法通常有两种:

邻接矩阵: 使用数组 vertices 存储顶点,邻接矩阵 edges 存储边; edges[i] [j] 代表节点 i + 1 和 节点 j + 1 之间是否有边。

int vertices[5] = {1, 2, 3, 4, 5};
int edges[5][5] = {{0, 1, 1, 1, 1},
                   {1, 0, 0, 1, 0},
                   {1, 0, 0, 0, 1},
                   {1, 1, 0, 0, 1},
                   {1, 0, 1, 1, 0}};

邻接表: 使用数组 vertices 存储顶点,邻接表 edges 存储边。 edges 为一个二维容器,第一维 i代表顶点索引,第二维 edges[i] 存储此顶点对应的边集和;例如 edges[0] = [1, 2, 3, 4] 代表 vertices[0] 的边集合为[1,2,3,4] 。

vertices = [1, 2, 3, 4, 5]
edges = [[1, 2, 3, 4],
         [0, 3],
         [0, 4],
         [0, 1, 4],
         [0, 2, 3]]

7.散列表

散列表是一种非线性数据结构,通过利用 Hash 函数将指定的「键 key」映射至对应的「值 value」,以实现高效的元素查找。

设想一个简单场景:a、b、c的学号分别为 10001, 10002, 10003 。

现需求从「姓名」查找「学号」。

则可通过建立姓名为 key ,学号为 value 的散列表实现此需求,代码如下:

// 初始化散列表
unordered_map<string, int> dic;
// 添加 key -> value 键值对
dic["a"] = 10001;
dic["b"] = 10002;
dic["c"] = 10003;
// 从姓名查找学号
dic.find("a")->second; // -> 10001
dic.find("b")->second; // -> 10002
dic.find("c")->second; // -> 10003

Hash 函数设计 Demo:

将三人的姓名存储至以下数组中,则各姓名在数组中的索引分别为 0, 1, 2 。

string names[] = { "a", "b", "c" };

此时,我们构造一个简单的 Hash 函数( % 为取余符号 ),公式和封装函数如下所示:

hash(key) = (key - 1) % 10000

int hash(int id) {
    int index = (id - 1) % 10000;
    return index;
}

则我们构建了以学号为 key 、姓名对应的数组索引为 value 的散列表。利用此 Hash 函数,则可在 O(1)O(1) 时间复杂度下通过学号查找到对应姓名,即:

names[hash(10001)] // a
names[hash(10002)] // b
names[hash(10003)] // c

8.堆

堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。

完全二叉树定义: 设二叉树深度为 k,若二叉树除第 k层外的其它各层(第 1至 k-1 层)的节点达到最大个数,且处于第 k 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。

如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。

18fbe8a4ca7a4731b1e4580c0bc540ed.png



通过使用「优先队列」的「压入 push()」和「弹出 pop()」操作,即可完成堆排序,实现代码如下:

// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> heap;
// 元素入堆
heap.push(1);
heap.push(4);
heap.push(2);
heap.push(6);
heap.push(8);
// 元素出堆(从小到大)
heap.pop(); // -> 1
heap.pop(); // -> 2
heap.pop(); // -> 4
heap.pop(); // -> 6
heap.pop(); // -> 8

注:文章借鉴力扣图解算法数据结构

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
25 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
30天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
19 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
29 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 存储 算法
【数据结构与算法基础】——算法复杂度
【数据结构与算法基础】——算法复杂度
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
19 0
|
1月前
|
存储 算法 Java
数据结构和算法--分段树
数据结构和算法--分段树
16 0
|
1月前
|
算法
计科一二班算法数据结构实验9答案
计科一二班算法数据结构实验9答案
14 0