【搜索引擎选型】Solr vs. Elasticsearch:怎么选?

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 【搜索引擎选型】Solr vs. Elasticsearch:怎么选?

结合了云,分析和认知搜索的观察结果

Solr vs. Elasticsearch在我们的客户项目和企业搜索社区中经常讨论。但是,随着传统企业搜索已演变为Gartner所谓的“ Insight Engines”,我们重新讨论了该主题,以提供结合了Cloud,Analytics和Cognitive Search功能的最新观察结果,以帮助您评估Solr和Elasticsearch。

通常,当我们帮助客户进行围绕其企业解决方案中使用开源搜索引擎的评估时,会提出以下问题:“ Solr还是Elasticsearch,哪个更好?”虽然可能会有先入为主的观念,这个问题比另一个要好,当被圈定为“哪个对我更好?”时,这个问题更相关。

可以使用多种搜索引擎技术,但是最受欢迎的开放源代码变体是那些依赖于Apache Lucene底层核心功能的技术,从本质上讲,这是使搜索引擎正常工作的部分。Solr和Elasticsearch是搜索库之上的组件,为完整的搜索产品提供了自己的实现和功能。Lucene的核心功能为Solr和Elasticsearch的基本搜索功能提供了相同的体验,但是围绕Lucene的实现方法才是差异化的原因。

搜索引擎的作用已经从有效地查找信息转变为在内容分析,预测建模以及与认知/智能搜索功能(例如自然语言处理(NLP),机器学习(ML)和相关性)的集成中发挥关键作用得分。我们已经在客户工作中探索并实现了这些智能功能-在此处了解更多信息。

 

Solr vs. Elasticsearch:哪个对我的组织更好?

这得看情况。

关于采用一种技术而不是另一种技术有许多用例。但是当被问到这个问题时,我通常会从运营管理的角度来类比地回答:“ Solr就像Linux。您可以根据自己的需求进行大量自定义和定制Solr,但与Elasticsearch所需的工作相比,管理和部署要涉及更多的资源,而且要消耗大量资源。Elasticsearch具有非常好的设计的用户界面(Kibana),非常易于部署,管理和监视(使用X-Pack),该界面允许进行数据探索和创建分析可视化,但是自定义其功能是有限的,并且使用插件框架。

如果您愿意,Elasticsearch可能适合您:

  • 使您的搜索引擎快速启动并运行,而几乎不会产生任何开销;
  • 尽快开始探索您的数据;和
  • 将分析和可视化视为用例的核心组成部分。

如果您满足以下条件,Solr可能适合您:

  • 需要大规模索引和重新处理大量数据;
  • 有可用的资源来投资于管理Solr和可用于交互的工具;和
  • 具有可与Solr配合使用的现有企业框架(例如其他Apache产品(例如Hadoop)或企业框架(例如Cloudera,Hortonworks或基于Hadoop的HDInsights))。

这并不是说Hadoop平台无法与Elasticsearch配合使用(我们已向客户提出了此方案),但是某些平台(尤其是Cloudera和Hortonworks)提供了额外的工具和方法来对生态系统内的数据建立索引和管理Solr(尤其是即将发布的支持Solr 7的Cloudera CDH 6版本。


观察结果:性能,功能和用例

根据经验,评估可以为帮助客户定义策略和实施路线图提供巨大的价值。在评估过程中,我们使用搜索引擎比较矩阵,根据特定客户的优先级,采用加权评分机制,根据特定客户的需求和用例评估搜索引擎的适用性。基于此分析,在为搜索引擎提出整体建议时,有一些共同的功能和用例可作为关注点。




在Solr和Elasticsearch之间选择?考虑这些

决定哪种搜索引擎最适合您的特定用例和需求,不应基于“非此即彼”的假设。Solr中特定功能的总体重要性可能超过Elasticsearch中的运营优势,例如:

在一个客户端的情况下,与Solr部署相关联的开销以及必须使用SolrNET的过期客户端(当时)的开销被Solr的可插入性所抵消。需要使用自定义加密更新和请求处理程序,才能使用旋转数据加密密钥对索引内容进行加密,从而需要在Elasticsearch上使用Solr。索引加密过程所需的功能无法在Elasticsearch中有效实现。

相反,在不考虑大数据或分析因素的情况下,针对一般搜索用例评估搜索引擎选项时,由于减少了维护和部署的开销以及用于完全托管和托管环境的选项,Elasticsearch成为更受欢迎的选项。

在某些情况下,根据对客户最重要的因素,尽管应用了计分规则,但尚不清楚哪个搜索引擎(包括商业引擎)最能满足客户的需求。在这种情况下,可以使用样本数据集进行“烘焙”,以评估每个引擎在一组特定用例中的表现,从而对客户进行评估。

归根结底,Solr和Elasticsearch都是强大,灵活,可扩展且功能强大的开源搜索引擎。总体用例和业务需求,以及所需的功能,操作注意事项以及与新的认知搜索和分析功能的集成,最终将决定您选择Solr还是Elasticsearch。

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
7月前
|
存储 监控 数据可视化
可观测性方案怎么选?SelectDB vs Elasticsearch vs ClickHouse
基于 SelectDB 的高性能倒排索引、高吞吐量写入和高压缩存储,用户可以构建出性能高于Elasticsearch 10 倍的可观测性平台,并支持国内外多个云上便捷使用 SelectDB Cloud 的开箱即用服务。
378 8
可观测性方案怎么选?SelectDB vs Elasticsearch vs ClickHouse
|
8月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:<https://github.com/awesimon/elasticsearch-mcp>,欢迎体验与反馈。
2051 1
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
328 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
开发框架 监控 搜索推荐
GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎
本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。
729 0
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
308 0
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
277 0
|
8月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1378 64
|
7月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3401 0
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
462 5
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo