深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 深度学习基础入门篇10:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}

深度学习基础入门篇[10]:序列模型-词表示{One-Hot编码、Word Embedding、Word2Vec、词向量的一些有趣应用}

在NLP领域,自然语言通常是指以文本的形式存在,但是计算无法对这些文本数据进行计算,通常需要将这些文本数据转换为一系列的数值进行计算。那么具体怎么做的呢?这里就用到词向量的概念。

一般情况下,当我们拿到文本数据的时候,会先对文本进行分词,然后将每个单词映射为相应的词向量,最后基于这些词向量进行计算,达到预设任务的效果,下边我们分如下几节展开介绍词向量相关的知识。

1.One-Hot编码: 一种简单的单词编码方式

在NLP领域,如何将单词数值化呢,One-Hot编码就是一种很简单的方式。假设我们现在有单词数量为$N$的词表,那可以生成一个长度为$N$的向量来表示一个单词,在这个向量中该单词对应的位置数值为1,其余单词对应的位置数值全部为0。举例如下:

词典: [queen, king, man, woman, boy, girl ]

图1 one-hot 编码图

假设当前词典中有以上6个单词,图1展示了其中4个单词的one-hot编码表示。这个表示是不是挺简单的,但是这种表示方式也有一些不太合适的地方。

首先,在实际应用中词表中单词的数量往往比较多,高达几十万,甚至百万。这种情况下使用one-hot编码的方式表示一个单词,向量维度过长,同时向量会极其稀疏。

其次,从图1我们也可以看出向量之间是正交的,向量之间的点积为0,因此无法直接通过向量计算的方式来得出单词之间的关系。直观上我们希望语义相近的单词之间的距离比较近。比如,我们知道,“香蕉”和“橘子”更加相似,而“香蕉”和“句子”就没有那么相似,同时,“香蕉”和“食物”,“水果”的相似程度,可能介于“橘子”和“句子之间”。

2.Word Embedding: 一种分布式单词表示方式

前边我们谈到了one-hot编码的缺陷,这一节我们来聊另一种分布式的表示方式:Word Embedding,看他是怎么解决这些问题的。

假设每个单词都可以用$n$个特征进行表示,即可以使用这$n$个特征来刻画每个单词,如图2所示,我们使用图2中的这5个特征来刻画”狗”、”蜈蚣”、”君子兰”和”填空”这几个词。

图2 单词表示样例

显然,有了这些特征去构建词向量,我们能够根据这些特征比较容易地去划分单词的类别,比如”狗”和”蜈蚣”均是动物,在这个角度上说是一类的,他们之间的距离应该要比”狗”和”君子兰”近。

我们在回到词向量上来,按照同样的想法,可以使用这$n$个特征来刻画每个单词,并且这$n$个特征是浮点类型的,这样可以拓宽表示范围。当我们将视角切换到$n$维空间,那么每个词向量其实就相当于是该$n$维空间的一个点,相当于是将该单词嵌入到该空间中,这也是Word Embedding的原始意义。

当然我们通常是无法穷举具体的特征类别的,所以在NLP领域一般直接将模型表示为长度为$n$的向量让模型去训练(只是每个向量维度具体代表什么含义是不好去解释的)。但好消息是通过合适的词向量学习算法,是可以比较好的学习到单词的语义信息的,语义相近的单词之间的距离会比较近,语义不同的单词之间距离会比较远。

图3 词向量示意图

图3展示了关于词向量的一些例子,当我们将词向量训练好之后,我们可以看到France, England, Italy等国家之间比较近,并形成一个小簇;dog, dogs,cat,cats形成一个小簇。簇内的单词距离一般会比较近,不同簇的单词距离会比较远。

3.Word2Vec: 一种词向量的训练方法

前边我们貌似提出了一个对词向量比较好的期望,但是如何去学习这些词向量,达到这种效果呢?这就是本节讨论的话题,本节将通过Word2Vec为大家讲解词向量的训练方法。

简单地讲,Word2Vec是建模了一个单词预测的任务,通过这个任务来学习词向量。假设有这样一句话Pineapples are spiked and yellow,现在假设spiked这个单词被删掉了,现在要预测这个位置原本的单词是什么。

Word2Vec本身就是在建模这个单词预测任务,当这个单词预测任务训练完成之后,那每个单词对应的词向量也就训练好了。下边我们来具体看看吧。

3.1 Word2Vec概述

在正式介绍之前,我们先来科普一下Word2Vec,Word2vec是2013年被Mikolov提出来的词向量训练算法,在论文中作者提到了两种word2vec的具体实现方式:连续词袋模型CBOWSkip-gram,如图4所示。

图4 CBOW和Skip-gram的对比

图4中使用了这句话作为例子:Pineapples are spiked and yellow,在这句话中假设中心词是spiked,这个单词的上下文是其他单词:Pineapples are and yellow。

连续词袋模型CBOW的建模方式是使用上下文单词来预测spiked这个单词,当然图片上展示的是spikey,相当于是预测错了。Skip-gram正好反过来,它是通过中心词来预测上下文。

一般来说,CBOWSkip-garm训练快且更加稳定一些,然而,Skip-garm不会刻意地回避生僻词(即出现频率比较低的词),比CBOW能够更好地处理生僻词。在本节呢,我们将以Skip-garm的方式讨论词向量的训练过程。

3.2 Skip-gram训练词向量原理

前边我们说到,Skip-gram是通过中心词来预测上下文。我们还是以Pineapples are spiked and yellow为例进行讲解,如图5所示,中心词是spiked,上下文是Pineapples are and yellow,在Skip-gram中,上下文是我们要预测的词,因此这些词也叫目标词。

图5 Skip-gram原理图

我们来看看Skip-garm具体是怎么工作的, 首先skip-gram是使用中心词来预测上下文,即利用spiked这个单词来预测 pineapples are and yellow这4个单词,但是训练过程中,这个预测结果很有可能并不是这4个单词,但是没关系,我们会使用这4个单词和预测的单词进行计算损失,通过损失的方式将正确的这4个单词的信息,使用梯度信息反向传播中心词spiked,这样在spiked单词在下次预测的时候,就会更准确一点。

总结一下,在训练过程中通过梯度的方式,将上下文单词的语义传入到了中心词的表示中,即使用了spiked的上下文来训练了spiked的词向量。但是我们来看spiked,和prickly这两个单词,他们的意思都是有刺,多刺的意思,那么真实的文本语料中,他们的上下文大概率也是差不多的,这样通过差不多的上下文去训练这个中心词,那么自然具有相同语义的词的词向量距离会比较近。

3.3 Skip-gram网络结构

前边我们提到,Word2Vec是建模了一个单词预测的任务,通过这个任务来学习词向量。同时呢,Skip-gram是一种以中心词预测上下文的方式进行的,那我们来看看它的网络结构长什么样子,如图6所示。

图6 Skip-gram网络结构

Skip-gram的网络结构共包含三层:输入层,隐藏层和输出层。它的处理步骤是这样的:

  1. 输入层接收shape为$[1,V]$的one-hot向量$x$,其中$V$代表词表中单词的数量,这个one-hot向量就是上边提到的中心词。

  2. 隐藏层包含一个shape为$[V,N]$的参数矩阵$W_1$,其中这个$N$代表词向量的维度,$W_1$就是word embedding 矩阵,即我们要学习的词向量。将输入的one-hot向量$x$与$W_1$相乘,便可得到一个shape为$[1, N]$的向量,即该输入单词对应的词向量$e$。

  3. 输出层包含一个shape为$[N,V]$的参数矩阵$W_2$,将隐藏层输出的$e$与$W_2$相乘,便可以得到shape为$[1,V]$的向量$r$,内部的数值分别代表每个候选词的打分,使用softmax函数,对这些打分进行归一化,即得到中心词的预测各个单词的概率。

这是一种比较理想的实现方式,但是这里有两个问题:

  1. 这个输入向量是个one-hot编码的方式,只有一个元素为1,其他全是0,是个极其稀疏的向量,假设它第2个位置为1,它和word embedding相乘,便可获得word embedding矩阵的第二行的数据。那么我们知道这个规律,直接通过访存的方式直接获取就可以了,不需要进行矩阵相乘。

  2. 在获取了输入单词对应的词向量$e$后,它是一个$[1,N]$向量。接下来,会使用这个向量和另外一个大的矩阵$W_2$进行相乘,最终会获得一个1*V的向量,然后对这个向量进行softmax,可以看到这个向量具有词表的长度,对这么长的向量进行softmax本身也是一个极其消耗资源的事情。

第1个问题解决起来比较简单,我们主要来看第2个问题,那怎么解决呢?直观的想法是我们不要去生成这么多的类别,所以采用了一个负采样的策略,将海量分类转化成了二分类,来缓解这个问题,下我们来看看它具体是怎么做的。

3.4 负采样解决大规模分类问题

图7 使用负采样策略训练Skip-gram模型

还是以Pineapples are spiked and yellow为例进行讲解,如图7所示,其中中心词是spiked和上下文词是正样本Pineapples are and yellow,这里这个正样本代表该词是中心词的上下文。

以正样本单词Pineapples为例,之前的做法是在使用softmax学习时,需要最大化Pineapples的推理概率,同时最小化其他词表中词的推理概率。之所以计算缓慢,是因为需要对词表中的所有词都计算一遍。然而我们还可以使用另一种方法,就是随机从词表中选择几个代表词,通过最小化这几个代表词的概率,去近似最小化整体的预测概率。

例如,先指定一个中心词(spiked)和一个目标词正样本(Pineapples),再随机在词表中采样几个目标词负样本(如”dog,house”等)。

有了这些正负样本,我们的skip-gram模型就变成了一个二分类任务。对于目标词正样本,我们需要最大化它的预测概率;对于目标词负样本,我们需要最小化它的预测概率。通过这种方式,我们就可以完成计算加速。这个做法就是负采样

我们再回到图7看一看整体的训练流程是怎么样的。图7中相当于有两个词向量矩阵:黄色的和灰色的,他们的shape都是一样的。整体的流程大概是这样的。

  1. 获取中心词spiked的正负样本(正负样本是目标词),这里一般会设定个固定的窗口,比如中心词前后3个词算是中心词的上下文(即正样本);

  2. 获取对应词的词向量,其中中心词从黄色的向量矩阵中获取词向量,目标词从灰色的向量矩阵中获取词向量。

  3. 将中心词和目标词的词向量进行点积并经过sigmoid函数,我们知道sigmoid是可以用于2分类的函数,通过这种方式来预测中心词和目标词是否具有上下文关系。

  4. 将预测的结果和标签使用交叉熵计算损失值,并计算梯度进行反向迭代,优化参数。

经过这个训练的方式,我们就可以训练出我们想要的词向量,但图7中包含两个词向量矩阵(黄色的和灰色的),一般是将中心词对应的词向量矩阵(黄色的)作为正式训练出的词向量。看到这里我想你已经明白Skip-gram大致是如何训练词向量了。

4. 关于词向量的一些有趣应用

前边几节我们提到,对词向量的期望是具有相同语义的词之间的距离比较近,不同语义的词之间的距离比较远。那么在词向量训练完成之后,我们可以基于这个期望去实验一些有趣的应用,也相当于是验证词向量学习的好坏。

4.1 相似度计算

我们可以去挖掘某个单词的同义词,即将一个单词的词向量和其他所有单词词向量进行距离计算,距离最小的那些词就是和该单词语义相近的,例如:

  • nice: good, great, wonderful

  • dog: dogs, puppy

4.2词聚类

根据各个单词的词向量,可以执行词聚类的算法,这样可以挖掘出一批语义相近的单词,例如:

  • Beijing, Washington, Paris, Berlin

  • slow, slowser, slowest

4.3 词关系推理

这是比较有趣的一个应用,通过词语义上的一些关系来进行推理一些词,例如下面几个例子。

  • King - Man + Woman = Queen

  • China - Beijing + Washington = America

相关文章
|
1天前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
2天前
|
机器学习/深度学习 算法 自动驾驶
探索深度学习在图像识别中的应用
【5月更文挑战第31天】本文将探讨深度学习技术在图像识别领域的应用。通过分析深度学习的原理和优势,我们将了解如何利用这种技术来提高图像识别的准确性和效率。同时,我们还将讨论一些常见的深度学习模型和算法,以及它们在图像识别中的实际应用案例。最后,我们将展望未来深度学习技术的发展方向和挑战。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用
【5月更文挑战第31天】本文主要探讨了深度学习技术在图像识别领域的应用。首先,介绍了深度学习的基本概念和原理。然后,详细分析了卷积神经网络(CNN)在图像识别中的优势和应用。最后,通过实例展示了深度学习在图像识别中的实际应用效果。
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】本文将探讨深度学习技术在图像识别领域的应用,分析其在处理复杂图像数据方面的优势,并讨论当前面临的主要挑战。我们将通过具体案例,展示深度学习模型如何提升图像识别的准确性和效率,同时指出数据质量、模型泛化能力以及计算资源等关键问题对实际应用的影响。
|
2天前
|
机器学习/深度学习 边缘计算 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的关键力量。特别是在图像识别任务中,深度神经网络通过模拟人类大脑处理信息的方式,显著提高了识别精度和效率。然而,尽管取得了突破性进展,但深度学习模型在实际应用中仍面临数据偏差、计算资源消耗巨大以及模型泛化能力有限等挑战。本文将探讨深度学习在图像识别领域的应用现状,分析其面临的主要技术难题,并提出可能的解决方案。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在医疗诊断中的应用探索深度学习在图像识别中的应用
【5月更文挑战第31天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。特别是在医疗诊断方面,AI技术不仅提高了诊断的准确性和效率,还为医生提供了更多的决策支持。本文将深入探讨AI在医疗诊断中的应用,包括图像识别、自然语言处理等方面,并分析其优势与挑战。 【5月更文挑战第31天】 随着人工智能技术的飞速发展,深度学习已经成为了推动计算机视觉领域进步的核心力量。本文将深入探讨深度学习技术在图像识别任务中的应用,重点分析了卷积神经网络(CNN)的基本原理、关键技术以及面临的挑战。通过精选的案例研究,我们揭示了深度学习如何改善模型的识别精度和泛化能力,同时讨论了目前该领域的开放性问题及未
|
2天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的关键力量。尤其在图像识别任务中,深度神经网络通过模拟人脑处理信息的方式,实现了对复杂图像内容的高效识别和分类。本文将探讨深度学习在图像识别领域的应用进展,分析其面临的主要挑战,并对未来发展趋势进行展望。
|
2天前
|
机器学习/深度学习 算法 安全
深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域前进的核心动力。特别是在图像识别任务中,深度神经网络通过模拟人类大脑处理视觉信息的方式,实现了对复杂图像内容的高效识别和理解。本文将深入探讨深度学习技术在图像识别领域的应用实例,分析其背后的关键技术,并针对当前面临的主要挑战提出可能的解决方案。
|
2天前
|
机器学习/深度学习 安全 网络安全
云端防御:云计算环境中的网络安全与信息保护策略深度学习在图像识别中的应用与挑战
【5月更文挑战第31天】 在数字化转型的浪潮中,云计算已成为企业及个人存储和处理数据的首选平台。然而,随着云服务的广泛采用,网络安全威胁也随之增加,使得信息安全成为亟待解决的挑战。本文聚焦于云计算环境特有的安全风险,探讨了多层次、多维度的防御策略,旨在为读者提供一套综合的云安全解决方案蓝图。通过分析当前云服务中的安全缺陷,并提出相应的防护措施,文章不仅强调了技术层面的对策,还涉及了管理与合规性方面的重要性。
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
基于深度学习的图像识别在自动驾驶技术中的应用
【5月更文挑战第31天】 随着人工智能领域的迅猛发展,深度学习技术已成为推动自动驾驶汽车进步的关键力量。本文聚焦于探讨基于深度学习的图像识别系统如何革新自动驾驶技术,并分析其在实际道路环境中的表现和挑战。通过综合应用卷积神经网络(CNN)、递归神经网络(RNN)等先进算法,我们构建了一个高效的图像处理框架,该框架能够实时地从复杂场景中提取关键信息,实现对行人、车辆及其他障碍物的精确识别。文章进一步讨论了模型训练的策略、数据集的准备以及系统优化方法,旨在为未来自动驾驶系统的研究和开发提供参考。