【EVRP问题】基于遗传算法求解带时间窗多电动车充电路径规划问题附Matlab源码

简介: 【EVRP问题】基于遗传算法求解带时间窗多电动车充电路径规划问题附Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

电动车在物流领域中取代燃油车是一个广泛的发展趋势.但电动车的电池利用率低,充电时间长,相关充电配套设施建设不完善,存在"续驶里程焦虑"等现象成为了电动车推广和应用的重要制约因素,也是一般路径规划模型不适用于电动车的原因.因此,针对电动车的特性研究路径规划问题具有重要的理论研究价值和实用价值.此外,现有的电动车路径规划研究中关于电量消耗模型的构建,大多假设与速度和载重无关.但是,电动车的实际行驶效果和理论研究表明,速度和载重对电动车的电量消耗具有显著的非线性影响,行驶速度每增加或减少10km/h,单位里程电量消耗量变化10%以上,而车辆载重每增加或减少100kg,单位里程电量消耗平均变化约4.2%,这些影响是不可忽略的,在研究路径规划时需加以考虑.本文基于速度和载重对电量消耗的非线性影响以及客户时间窗,车辆载重及电量的约束,以最小化电动车启动成本,充电成本,总行驶里程成本和总时间惩罚成本为目标函数,构建了基于非线性电量消耗的电动车路径规划模型,并采用遗传算法算法分别对问题求解,综合比较选择更优的路径规划结果.

⛄ 部分代码

%% 判断当前方案是否满足时间窗约束和载重量约束,0表示违反约束,1表示满足全部约束

%输入:chrom               个体

%输入:cap                 最大载重量

%输入:demands             需求量

%输入:a                   顾客时间窗开始时间[a[i],b[i]]

%输入:b                   顾客时间窗结束时间[a[i],b[i]]

%输入:L                   配送中心时间窗结束时间

%输入:s                   客户点的服务时间

%输入:dist                距离矩阵,满足三角关系,暂用距离表示花费c[i][j]=dist[i][j]

%输出:flag                0表示违反约束,1表示满足全部约束

function [flag,c]=Judge(VC,cap,demands,a,b,L,s,dist,chesu,bl)

flag=1;                         %假设满足约束

NV=size(VC,1);                  %车辆使用数目

%% 计算每辆车的装载量    init_v

init_v=vehicle_load(VC,demands);

%% 计算每辆车配送路线上在各个点开始服务的时间,还计算返回集配中心时间

bsv=begin_s_v(VC,a,s,dist,chesu,bl);

%% 判断是否违背时间窗约束,0代表不违背,1代表违背(violate 为一个为只包含0和1 的矩阵,1代表违反)

[violate_INTW, c]=Judge_TW(VC,bsv,a,b,L);

%% 遍历每条路径,一旦有一条路径不满足约束,flag=0

for i=1:NV

   find1=find(violate_INTW{i}==1,1,'first');     %寻找该条路径违反时间窗约束的顾客位置

   if init_v(i)>cap || ~isempty(find1)

       flag=0;

       break

   end

end

end

⛄ 运行结果

⛄ 参考文献

[1] 周屹, 李海龙, 王锐. 遗传算法求解物流配送中带时间窗的VRP问题[J]. 吉林大学学报:理学版, 2008, 46(2):4.

[2] 阎庆, 邰蕾蕾. 用混合遗传算法解决有时间窗的车辆路径规划问题[J]. 安徽大学学报:自然科学版, 2007, 31(2):4.

[3] 周景欣. 遗传算法求解带时间窗的车辆路径问题[J]. 中国储运, 2023(1):2.

[4] 蒋波. 基于遗传算法的带时间窗车辆路径优化问题研究[D]. 北京交通大学, 2010.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码