2022年深度学习在时间序列预测和分类中的研究进展综述(上)

简介: 2022年深度学习在时间序列预测和分类中的研究进展综述

前言


223.png

来源:Deephub Imba


时间序列预测的transformers的衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步。

2022年整个领域在几个不同的方面取得了进展,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文,以及Flow Forecast [FF]预测框架。


24.png


正文


时间序列预测


1.Are Transformers Really Effective for Time Series Forecasting?


https://arxiv.org/pdf/2205.13504.pdf

Transformer相关研究对比Autoformer、Pyraformer、Fedformer等,它们的效果和问题:

25.png

随着 Autoformer (Neurips 2021)、Pyraformer (ICLR 2022)、Fedformer (ICML 2022)、EarthFormer (Neurips 2022) 和 Non-Stationary Transformer (Neurips) 等模型的出现,时间序列预测架构的 Transformer 系列不断发展壮)。但是这些模型准确预测数据并优于现有方法的能力仍然存在疑问,特别是根据新研究(我们将在稍后讨论)。

Autoformer :扩展并改进了 Informer 模型的性能。Autoformer 具有自动关联机制,使模型能够比标准注意力更好地学习时间依赖性。它旨在准确分解时态数据的趋势和季节成分。

26.png

Pyraformer:作者介绍了“金字塔注意模块 (PAM),其中尺度间树结构总结了不同分辨率下的特征,尺度内相邻连接对不同范围的时间依赖性进行建模。”

Fedformer:该模型侧重于在时间序列数据中捕捉全球趋势。作者提出了一个季节性趋势分解模块,旨在捕捉时间序列的全局特征。

Earthformer: 可能是这些论文中最独特的一个,它特别专注于预测地球系统,如天气、气候和农业等。介绍了一种新的cuboid 注意力架构。这篇论文应该是潜力巨大的望,因为在河流和暴洪预测方面的研究,许多经典的Transformer都失败了。

Non-Stationary Transformer:这是使用transformer 用于预测的最新论文。作者旨在更好地调整 Transformer 以处理非平稳时间序列。他们采用两种机制:去平稳注意里和一系列平稳化机制。这些机制可以插入到任何现有的Transformer模型中,作者测试将它们插入 Informer、Autoformer 和传统的Transformer 中,都可以提高性能(在附录中,还表明它可以提高 Fedformer 的性能)。

论文的评估方法:与 Informer 类似,所有这些模型(Earthformer 除外)都在电力、交通、金融和天气数据集上进行了评估。主要根据均方误差 (MSE) 和平均绝对误差 (MAE) 指标进行评估:

27.png

这篇论文很好,但是它只对比了Transformer相关的论文,其实应该与更简单的方法进行比较,比如简单的线性回归、LSTM/GRU、甚至是XGB等树形模型。另外就是它们应该不仅仅局限在一些标准数据集,因为我在其他时间序列相关数据集上没有看到很好的表现。比如说informer准确预测河流流量方面遇到了巨大的问题,与LSTM或甚至是普通的Transformer相比,它的表现通常很差。

另外就是由于与计算机视觉不同,图像维度至少保持不变,时间序列数据在长度、周期性、趋势和季节性方面可能存在巨大差异,因此需要更大范围的数据集。

在OpenReview的Non-Stationary Transformer的评论中,一位评论者也表达了这些问题,但它在最终的元评论中被否决了:

“由于该模型属于Transformer领域,而且Transformer之前已经在许多任务中表现出了最先进的水平,我认为没有必要与其他‘家族’方法进行比较。”

这是一个非常有问题的论点,并导致研究在现实世界中缺乏适用性。就像我们所认知的:XGB在表格数据的压倒性优势还没有改变,Transformer的闭门造车又有什么意义?每次都超越,每次都被吊打。

作为一个在实践中重视最先进的方法和创新模型的人,当我花了几个月的时间试图让一个所谓的“好”模型工作时,但是最后却发现,他的表现还不如简单的线性回归,那这几个月有什么意思?这个所谓的好”模型又有什么意义。

所有的 transformer 论文都同样存在有限评估的问题。我们应该从一开始就要求更严格的比较和对缺点的明确说明。一个复杂的模型最初可能并不总是优于简单模型,但需要在论文中明确指出这一点,而不是掩盖或简单地假设没有这种情况。

但是这篇论文还是很好的,比如Earthformer 在MovingMNIST 数据集和N-body MNIST数据集上进行了评估,作者用它来验证cuboid 注意力的有效性,评估了它的降水量即时预报和厄尔尼诺周期预报。我认为这是一个很好的例子,将物理知识整合到具有注意力的模型架构中,然后设计出好的测试。


2.Are Transformers Effective for Time Series Forecasting (2022)?


https://arxiv.org/pdf/2205.13504.pdf

28.png

这篇论文探讨了 Transformer 预测数据与基线方法的能力。结果在某种程度上再次证实了Transformers 的性能通常比更简单的模型差,而且难以调整。这篇论文中的几个有趣的观点:

  • 用基本的线性层替换自注意力并发现:“Informer 的性能随着逐渐简化而增长,表明至少对于现有的 LTSF 基准来说,自注意力方案和其他复杂模块是不必要的”
  • 调查了增加回溯窗口( look-back window )是否会提高 Transformer 的性能并发现:“SOTA Transformers 的性能略有下降,表明这些模型仅从相邻的时间序列序列中捕获相似的时间信息。”
  • 探讨了位置嵌入是否真的能很好地捕捉时间序列的时间顺序。通过将输入序列随机混洗到Transformer中来做到这一点。他们在几个数据集上发现这种改组并没有影响结果(这个编码很麻烦)。


在过去的几年里,Transformer模型的无数次时间序列实验在绝大多数情况下结果都不太理想。在很长一段时间里,我们都认为一定是做错了什么,或者遗漏了一些小的实现细节。所有这些都被认为是下一个SOTA模型的思路。但是这个论文却有一致的思路就是?如果一个简单的模型胜过Transformer,我们应该继续使用它们吗?是所有的Transformer都有固有的缺陷,还是只是当前的机制?我们是否应该回到lstm、gru或简单的前馈模型这样的架构?这些问题我都不知道答案,但是这篇论文的整体影响还有待观察。到目前为止,我认为答案可能是退一步,专注于学习有效的时间序列表示。毕竟最初BERT在NLP环境中成功地形成了良好的表示。

也就是说,我不认为我们应该把时间序列的Transformer视为完全死亡。Fedformer的表现非常接近简单模型,并且在各种消融打乱任务中表现更好。虽然的基准在很多情况下都难以进行预测,但他们对数据的内部表示却相当不错。我认为还需要进一步了解内部表示和实际预测输出之间的脱节。另外就是正如作者所建议的那样,改进位置嵌入可以在提高整体性能方面发挥关键作用。最后有一个Transformer的模型,在各种异常检测数据集上表现非常好,下面就会介绍。


3.Anomaly Transformer (ICLR Spolight 2022)


https://arxiv.org/abs/2110.02642

相当多的研究都集中在将 transformers 应用于预测,但是异常检测的研究相对较少。这篇介绍了一种(无监督)Transformer 来检测异常。该模型结合使用特别构建的异常注意机制和 minmax 策略。

29.png


本文在五个真实世界的数据集上评估了模型的性能,包括Server Machine Dataset, Pooled Server Metrics, Soil Moisture Active Passive和NeurIPS-TS(它本身由五个不同的数据集组成)。虽然有人可能会对这个模型持怀疑态度,特别是关于第二篇论文的观点,但这个评估是相当严格的。Neurips-TS是一个最近创建的,专门用于提供更严格的异常检测模型评估的数据集。与更简单的异常检测模型相比,该模型似乎确实提高了性能。

作者提出了一种独特的无监督Transformer,它在过多的异常检测数据集上表现良好。这是过去几年时间序列Transformer领域最有前途的论文之一。因为预测比分类甚至异常检测更具挑战性,因为你试图预测未来多个时间步骤的巨大可能值范围。这么多的研究都集中在预测上,而忽略了分类或异常检测,对于Transformer我们是不是应该从简单的开始呢?


4.WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting (Neurips 2022):


https://openreview.net/forum?id=vsNQkquutZk

论文介绍了一种新的正则化形式,可以改进深度时间序列预测模型(特别是上述transformers )的训练。

作者通过将其插入现有的 transformer + LSTNet模型来评估。他们发现它在大多数情况下显着提高了性能。尽管他们只测试了Autoformer 模型,而没有测试 Fedformer 这样的更新模型。

新形式的正则化或损失函数总是有用的,因为它们通常可以插入任何现有的时间序列模型中。如果你 Fedformer + 非平稳机制 + Wavebound 结合起来,你可能会在性能上击败简单的线性回归 :)。

相关文章
|
2天前
|
机器学习/深度学习 人工智能 边缘计算
基于深度学习的图像识别优化策略研究
【5月更文挑战第17天】 在当前的信息时代,图像识别技术作为人工智能领域的一个重要分支,已经广泛应用于医疗诊断、自动驾驶、安防监控等多个行业。随着技术的不断进步,深度学习模型在图像识别任务中取得了显著的成果。然而,随之而来的是对计算资源的大量需求以及实时处理的挑战。本文针对现有深度学习模型在图像识别任务中的资源消耗和响应速度问题,提出了一种结合模型压缩与知识蒸馏的优化策略。通过深入分析模型结构与参数特性,实现在保持高准确率的同时降低模型复杂度,提高运算效率。本研究不仅对推动高效图像识别技术的发展具有重要意义,同时也为其他计算密集型应用提供了可行的优化思路。
|
4天前
|
机器学习/深度学习 边缘计算 算法
基于深度学习的图像识别优化策略研究
【5月更文挑战第8天】 本研究旨在探索提高深度神经网络在图像识别任务中性能的有效策略。通过分析现有模型的局限性,本文提出了一系列优化技术,包括数据增强、网络结构调整和损失函数改进。实验结果表明,这些策略显著提升了模型的准确率和泛化能力,尤其在处理高复杂度图像时表现突出。此外,针对计算资源消耗问题,我们还探讨了模型压缩和加速方法,以期实现高效率的实时图像识别应用。
|
4天前
|
机器学习/深度学习 边缘计算 算法
基于深度学习的图像识别优化策略研究
【5月更文挑战第7天】 在计算机视觉领域,图像识别作为核心任务之一,其性能的提升一直是研究的热点。随着深度学习技术的不断发展,卷积神经网络(CNN)已成为图像识别的主要工具。然而,模型复杂度和计算资源的大量需求限制了其在实际应用中的推广。本文围绕减少模型参数、提高运算效率和保持识别准确率等方面展开,提出了一种结合深度可分离卷积与注意力机制的图像识别优化策略。通过实验验证,该策略在多个标准数据集上取得了与传统卷积网络相媲美的结果,同时显著降低了参数数量和计算成本。
30 4
|
4天前
|
机器学习/深度学习 边缘计算 计算机视觉
基于深度学习的图像识别优化技术研究
【5月更文挑战第5天】 在当前的计算机视觉领域,图像识别技术已取得显著进展,尤其是深度学习方法的广泛应用。然而,随着数据量的日益增加和模型复杂度的提升,如何提高图像识别的效率与准确性成为新的挑战。本文提出了一种基于改进卷积神经网络(CNN)的图像识别优化技术,旨在减少模型参数量、加速推理过程,并保持甚至提升识别精度。通过引入深度可分离卷积、注意力机制以及量化剪枝策略,该技术在多个标准数据集上显示出了卓越的性能。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习的图像识别优化策略研究
【4月更文挑战第30天】 随着人工智能技术的飞速发展,图像识别作为其重要应用之一,在多个领域内扮演着关键角色。然而,传统的图像识别方法面临着效率低下、准确性有限等问题。本文旨在探讨并提出一种基于深度学习的图像识别优化策略,通过改进算法结构和训练过程来提高识别精度与速度。我们采用了卷积神经网络(CNN)模型,结合最新的正则化技术和数据增强方法,显著提升了模型的泛化能力。此外,针对计算资源的高效利用,我们引入了混合精度训练和模型剪枝技术,以减少模型复杂度和加速推理过程。实验结果表明,所提出的优化策略在保持甚至提高识别准确率的同时,大幅降低了模型的运行时间和资源消耗。
|
4天前
|
机器学习/深度学习 算法 数据可视化
MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究
MATLAB基于深度学习U-net神经网络模型的能谱CT的基物质分解技术研究
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在自动驾驶系统中的应用研究
【4月更文挑战第28天】 随着人工智能技术的突飞猛进,深度学习在图像识别领域的应用已逐渐成熟,并在自动驾驶系统中扮演着至关重要的角色。本文聚焦于探讨深度学习模型如何优化自动驾驶车辆的图像识别过程,以及这些技术如何提高系统的整体性能和安全性。文中首先介绍了深度学习在图像处理中的基础理论,随后详细分析了卷积神经网络(CNN)在车辆环境感知中的应用,并提出了一种新型的融合算法,该算法能更有效地处理复杂环境下的图像数据。通过实验验证,本研究所提出的模型在多个公开数据集上表现出了优越的识别精度和实时性,为未来自动驾驶技术的发展提供了有价值的参考。
|
4天前
|
机器学习/深度学习 计算机视觉 异构计算
基于深度学习的图像识别优化策略研究
【4月更文挑战第28天】随着人工智能技术的飞速发展,深度学习在图像识别领域取得了显著成就。然而,实时性和准确性仍是挑战焦点。本文针对现有深度学习模型在处理高分辨率图像时面临的计算资源消耗大、推理速度慢等问题,提出了一种结合模型压缩与知识蒸馏的优化策略。通过量化分析、剪枝和蒸馏技术的结合使用,实现了模型性能与计算效率的平衡。实验结果表明,该策略能够在保持较高识别准确率的同时,显著减少模型参数量和提高处理速度。
|
4天前
|
机器学习/深度学习 编解码 算法
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
|
4天前
|
机器学习/深度学习 数据可视化 网络架构
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测