深度学习实战(11):使用多层感知器分类器对手写数字进行分类

简介: MLP 是一种监督机器学习 (ML) 算法,属于前馈人工神经网络 [1] 类。该算法本质上是在数据上进行训练以学习函数。给定一组特征和一个目标变量(例如标签),它会学习一个用于分类或回归的非线性函数。在本文中,我们将只关注分类案例。

d64454b2341e4ac2a245380589ee6eb2.png


1.简介


1.1 什么是多层感知器(MLP)?


MLP 是一种监督机器学习 (ML) 算法,属于前馈人工神经网络 [1] 类。该算法本质上是在数据上进行训练以学习函数。给定一组特征和一个目标变量(例如标签),它会学习一个用于分类或回归的非线性函数。在本文中,我们将只关注分类案例。


1.2 MLP和逻辑回归有什么相似之处吗?


有!逻辑回归只有两层,即输入和输出,但是,在 MLP 模型的情况下,唯一的区别是我们可以有额外的中间非线性层。这些被称为隐藏层。除了输入节点(属于输入层的节点)之外,每个节点都是一个使用非线性激活函数的神经元[1]。由于这种非线性性质,MLP 可以学习复杂的非线性函数,从而区分不可线性分离的数据!请参见下面的图 2,了解具有一个隐藏层的 MLP 分类器的可视化表示。


1.3 MLP 是如何训练的?


MLP 使用反向传播进行训练。


1.4 MLP的主要优缺点.


优点:


  • 可以学习非线性函数,从而分离不可线性分离的数据 。


缺点:


  • 隐藏层的损失函数导致非凸优化问题,因此存在局部最小值。


  • 不同的权重初始化可能会导致不同的输出/权重/结果。


  • MLP 有一些超参数,例如隐藏神经元的数量,需要调整的层数(时间和功耗)。


  • MLP 可能对特征缩放敏感 。


46a2019baed04f3eaa500d2eb1d2b151.png


2.使用scikit-learn的Python动手实例


2.1 数据集


对于这个实践示例,我们将使用 MNIST 数据集。 MNIST 数据库是一个著名的手写数字数据库,用于训练多个 ML 模型 。有 10 个不同数字的手写图像,因此类别数为 10 (参见图 3)。


注意:由于我们处理图像,因此这些由二维数组表示,并且数据的初始维度是每个图像的 28 by 28 ( 28x28 pixels )。然后二维图像被展平,因此在最后由矢量表示。每个 2D 图像都被转换为维度为 [1, 28x28] = [1, 784] 的 1D 向量。最后,我们的数据集有 784 个特征/变量/列。


81caa8e7e8384121b1fb166726da0701.png


2.2 数据导入与准备


import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.neural_network import MLPClassifier
# Load data
X, y = fetch_openml("mnist_784", version=1, return_X_y=True)
# Normalize intensity of images to make it in the range [0,1] since 255 is the max (white).
X = X / 255.0


请记住,每个 2D 图像现在都转换为维度为 [1, 28x28] = [1, 784] 的 1D 矢量。我们现在来验证一下。


print(X.shape)


这将返回: (70000, 784) 。我们有 70k 个扁平图像(样本),每个图像包含 784 个像素(28*28=784)(变量/特征)。

因此,输入层权重矩阵的形状为


784 x #neurons_in_1st_hidden_layer.


输出层权重矩阵的形状为


#neurons_in_3rd_hidden_layer x #number_of_classes


2.3 模型训练


现在让我们构建模型、训练它并执行分类。我们将分别使用 3 个隐藏层和 50,20 and 10 个神经元。此外,我们将设置最大迭代次数 100 ,并将学习率设置为 0.1 。这些是我在简介中提到的超参数。我们不会在这里微调它们。


# Split the data into train/test sets
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]
classifier = MLPClassifier(
    hidden_layer_sizes=(50,20,10),
    max_iter=100,
    alpha=1e-4,
    solver="sgd",
    verbose=10,
    random_state=1,
    learning_rate_init=0.1,
)
# fit the model on the training data
classifier.fit(X_train, y_train)


2.4 模型评估


现在,让我们评估模型。我们将估计训练和测试数据和标签的平均准确度。


print("Training set score: %f" % classifier.score(X_train, y_train))
print("Test set score: %f" % classifier.score(X_test, y_test))


训练集分数:


0.998633


测试集分数:


0.970300


2.5 成本函数演变的可视化


训练期间损失减少的速度有多快?让我们制作一个漂亮的图表看一看!


fig, axes = plt.subplots(1, 1)
axes.plot(classifier.loss_curve_, 'o-')
axes.set_xlabel("number of iteration")
axes.set_ylabel("loss")
plt.show()

6ce45521763940549d4e49082d41bf49.png


在这里,我们看到损失在训练期间下降得非常快,并且在 40th 迭代后饱和(请记住,我们将最大 100 次迭代定义为超参数)。


2.6 可视化学习到的权重


这里我们首先需要了解权重(每一层的学习模型参数)是如何存储的。


根据文档,属性 classifier.coefs_ 是形状为 (n_layers-1, ) 的权重数组的列表,其中索引 i 处的权重矩阵表示层 i 和层 i+1 之间的权重。在这个例子中,我们定义了 3 个隐藏层,我们还有输入层和输出层。因此,我们希望层间权重有 4 个权重数组(图 5 中的 in-L1, L1-L2, L2-L3 和 L2-out )。


类似地, classifier.intercepts_ 是偏置向量列表,其中索引 i 处的向量表示添加到层 i+1 的偏置值。


9673527dcf13460f85187146f3a8c709.png


让我们验证一下:


len(classifier.intercepts_) == len(classifier.coefs_) == 4


正确返回 True 。


输入层权重矩阵的形状为


784 x #neurons_in_1st_hidden_layer.


输出层权重矩阵的形状为


#neurons_in_3rd_hidden_layer x #number_of_classes.


2.7 可视化输入层的学习权重


target_layer = 0 #0 is input, 1 is 1st hidden etc
fig, axes = plt.subplots(1, 1, figsize=(15,6))
axes.imshow(np.transpose(classifier.coefs_[target_layer]), cmap=plt.get_cmap("gray"), aspect="auto")
axes.set_xlabel(f"number of neurons in {target_layer}")
axes.set_ylabel("neurons in output layer")
plt.show()

3f8843f80075486fbd94e8e3a6ab1d0c.png


将它们重新整形并绘制为 2D 图像。


# choose layer to plot
target_layer = 0 #0 is input, 1 is 1st hidden etc
fig, axes = plt.subplots(4, 4)
vmin, vmax = classifier.coefs_[0].min(), classifier.coefs_[target_layer].max()
for coef, ax in zip(classifier.coefs_[0].T, axes.ravel()):
    ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=0.5 * vmin, vmax=0.5 * vmax)
    ax.set_xticks(())
    ax.set_yticks(())
plt.show()


3.总结


MLP 分类器是一种非常强大的神经网络模型,可以学习复杂数据的非线性函数。该方法使用前向传播来构建权重,然后计算损失。接下来,反向传播用于更新权重,从而减少损失。这是以迭代方式完成的,迭代次数是一个输入超参数,正如我在简介中所解释的那样。其他重要的超参数是每个隐藏层中的神经元数量和隐藏层总数。这些都需要微调。

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
23 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从基础到实战
【9月更文挑战第19天】本文将带你走进深度学习的世界,从基础概念入手,逐步深入到实战应用。我们将通过简单易懂的语言和生动的比喻,让你轻松理解深度学习的原理和应用场景。同时,我们还为你准备了一些实用的代码示例,帮助你快速入门深度学习,开启你的AI之旅。
38 10
|
19天前
|
机器学习/深度学习 自动驾驶 搜索推荐
深度学习之探索神经网络、感知器与损失函数
在当今的数字化时代,深度学习作为一种强大的机器学习技术,正在迅速改变着我们的生活方式。无论是智能推荐系统、自动驾驶车辆还是语音识别应用,深度学习都在背后默默地发挥作用。
27 1
|
26天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习:从基础到实战
【9月更文挑战第23天】本文将带你走进深度学习的世界,从基本概念到实际应用,一步步揭示深度学习的神秘面纱。我们将通过实例和代码示例,帮助你理解和掌握深度学习的核心技术和方法。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的参考和启示。让我们一起探索深度学习的奥秘吧!
23 0
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深入浅出:使用深度学习进行图像分类
【8月更文挑战第31天】在本文中,我们将一起探索如何利用深度学习技术对图像进行分类。通过简明的语言和直观的代码示例,我们将了解构建和训练一个简单卷积神经网络(CNN)模型的过程。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供清晰的指导和启发性的见解,帮助你理解并应用深度学习解决实际问题。
|
16天前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
38 0
|
2月前
|
机器学习/深度学习 API 计算机视觉
如何使用深度学习实现图像分类
深度学习在图像分类中扮演着核心角色,通过卷积神经网络(CNN)自动提取图像特征并分类。本文介绍深度学习原理及其实现流程,包括数据准备、构建CNN模型、训练与评估模型,并讨论如何在阿里云上部署模型及其实用场景。
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
84 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘深度学习——从理论到实战
【8月更文挑战第31天】 本文将深入探讨深度学习的奥秘,从基础理论到实际应用,带你领略深度学习的魅力。我们将通过一个简单的代码示例,展示深度学习在图像识别领域的应用,让你对深度学习有更直观的认识。
下一篇
无影云桌面