交通路标识别(毕业设计)

简介: 交通路标识别(毕业设计)

概述:


代码获取:可私信

在TensorFlow中实现单镜头多盒检测器(SSD),用干检测和分类交通标志。该实现能够在具有 Intel Corei7-6700K的GTX1080实现40-45fos

请注意,此项目仍在进行中。现在的主要问题是模型过度拟合,


我目前正在先进行VOC2012的预培训,然后进行交通标志检测的转移学习。目前只检测到停车标志和人行横道标志。检测图像示例如下。


依赖库与代码


Skip to content
Product
Solutions
Open Source
Pricing
Search
Sign in
Sign up
georgesung
/
ssd_tensorflow_traffic_sign_detection
Public
Code
Issues
32
Pull requests
Actions
Projects
Security
Insights
ssd_tensorflow_traffic_sign_detection/inference.py /
@georgesung
georgesung Removed unused function run_inference_old()
Latest commit 88f1781 on Feb 15, 2017
 History
 1 contributor
189 lines (155 sloc)  6.08 KB
'''
Run inference using trained model
'''
import tensorflow as tf
from settings import *
from model import SSDModel
from model import ModelHelper
from model import nms
import numpy as np
from sklearn.model_selection import train_test_split
import cv2
import math
import os
import time
import pickle
from PIL import Image
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from optparse import OptionParser
import glob
def run_inference(image, model, sess, mode, sign_map):
  """
  Run inference on a given image
  Arguments:
    * image: Numpy array representing a single RGB image
    * model: Dict of tensor references returned by SSDModel()
    * sess: TensorFlow session reference
    * mode: String of either "image", "video", or "demo"
  Returns:
    * Numpy array representing annotated image
  """
  # Save original image in memory
  image = np.array(image)
  image_orig = np.copy(image)
  # Get relevant tensors
  x = model['x']
  is_training = model['is_training']
  preds_conf = model['preds_conf']
  preds_loc = model['preds_loc']
  probs = model['probs']
  # Convert image to PIL Image, resize it, convert to grayscale (if necessary), convert back to numpy array
  image = Image.fromarray(image)
  orig_w, orig_h = image.size
  if NUM_CHANNELS == 1:
    image = image.convert('L')  # 8-bit grayscale
  image = image.resize((IMG_W, IMG_H), Image.LANCZOS)  # high-quality downsampling filter
  image = np.asarray(image)
  images = np.array([image])  # create a "batch" of 1 image
  if NUM_CHANNELS == 1:
    images = np.expand_dims(images, axis=-1)  # need extra dimension of size 1 for grayscale
  # Perform object detection
  t0 = time.time()  # keep track of duration of object detection + NMS
  preds_conf_val, preds_loc_val, probs_val = sess.run([preds_conf, preds_loc, probs], feed_dict={x: images, is_training: False})
  if mode != 'video':
    print('Inference took %.1f ms (%.2f fps)' % ((time.time() - t0)*1000, 1/(time.time() - t0)))
  # Gather class predictions and confidence values
  y_pred_conf = preds_conf_val[0]  # batch size of 1, so just take [0]
  y_pred_conf = y_pred_conf.astype('float32')
  prob = probs_val[0]
  # Gather localization predictions
  y_pred_loc = preds_loc_val[0]
  # Perform NMS
  boxes = nms(y_pred_conf, y_pred_loc, prob)
  if mode != 'video':
    print('Inference + NMS took %.1f ms (%.2f fps)' % ((time.time() - t0)*1000, 1/(time.time() - t0)))
  # Rescale boxes' coordinates back to original image's dimensions
  # Recall boxes = [[x1, y1, x2, y2, cls, cls_prob], [...], ...]
  scale = np.array([orig_w/IMG_W, orig_h/IMG_H, orig_w/IMG_W, orig_h/IMG_H])
  if len(boxes) > 0:
    boxes[:, :4] = boxes[:, :4] * scale
  # Draw and annotate boxes over original image, and return annotated image
  image = image_orig
  for box in boxes:
    # Get box parameters
    box_coords = [int(round(x)) for x in box[:4]]
    cls = int(box[4])
    cls_prob = box[5]
    # Annotate image
    image = cv2.rectangle(image, tuple(box_coords[:2]), tuple(box_coords[2:]), (0,255,0))
    label_str = '%s %.2f' % (sign_map[cls], cls_prob)
    image = cv2.putText(image, label_str, (box_coords[0], box_coords[1]), 0, 0.5, (0,255,0), 1, cv2.LINE_AA)
  return image
def generate_output(input_files, mode):
  """
  Generate annotated images, videos, or sample images, based on mode
  """
  # First, load mapping from integer class ID to sign name string
  sign_map = {}
  with open('signnames.csv', 'r') as f:
    for line in f:
      line = line[:-1]  # strip newline at the end
      sign_id, sign_name = line.split(',')
      sign_map[int(sign_id)] = sign_name
  sign_map[0] = 'background'  # class ID 0 reserved for background class
  # Create output directory 'inference_out/' if needed
  if mode == 'image' or mode == 'video':
    if not os.path.isdir('./inference_out'):
      try:
        os.mkdir('./inference_out')
      except FileExistsError:
        print('Error: Cannot mkdir ./inference_out')
        return
  # Launch the graph
  with tf.Graph().as_default(), tf.Session() as sess:
    # "Instantiate" neural network, get relevant tensors
    model = SSDModel()
    # Load trained model
    saver = tf.train.Saver()
    print('Restoring previously trained model at %s' % MODEL_SAVE_PATH)
    saver.restore(sess, MODEL_SAVE_PATH)
    if mode == 'image':
      for image_file in input_files:
        print('Running inference on %s' % image_file)
        image_orig = np.asarray(Image.open(image_file))
        image = run_inference(image_orig, model, sess, mode, sign_map)
        head, tail = os.path.split(image_file)
        plt.imsave('./inference_out/%s' % tail, image)
      print('Output saved in inference_out/')
    elif mode == 'video':
      for video_file in input_files:
        print('Running inference on %s' % video_file)
        video = VideoFileClip(video_file)
        video = video.fl_image(lambda x: run_inference(x, model, sess, mode, sign_map))
        head, tail = os.path.split(video_file)
        video.write_videofile('./inference_out/%s' % tail, audio=False)
      print('Output saved in inference_out/')
    elif mode == 'demo':
      print('Demo mode: Running inference on images in sample_images/')
      image_files = os.listdir('sample_images/')
      for image_file in image_files:
        print('Running inference on sample_images/%s' % image_file)
        image_orig = np.asarray(Image.open('sample_images/' + image_file))
        image = run_inference(image_orig, model, sess, mode, sign_map)
        plt.imshow(image)
        plt.show()
    else:
      raise ValueError('Invalid mode: %s' % mode)
if __name__ == '__main__':
  # Configure command line options
  parser = OptionParser()
  parser.add_option('-i', '--input_dir', dest='input_dir',
    help='Directory of input videos/images (ignored for "demo" mode). Will run inference on all videos/images in that dir')
  parser.add_option('-m', '--mode', dest='mode', default='image',
    help='Operating mode, could be "image", "video", or "demo"; "demo" mode displays annotated images from sample_images/')
  # Get and parse command line options
  options, args = parser.parse_args()
  input_dir = options.input_dir
  mode = options.mode
  if mode != 'video' and mode != 'image' and mode != 'demo':
    assert ValueError('Invalid mode: %s' % mode)
  if mode != 'demo':
    input_files = glob.glob(input_dir + '/*.*')
  else:
    input_files = []
  generate_output(input_files, mode)

Python 3.5+

TensorFlow v0.12.0

Pickle

OpenCV Python

Matplotlib(可选)


运用


将此存储库克降到某处,让我们将其称为$ROOT

从头开始训练模型:

7b18298a5557004a5a856a1127f5db5e_4a305475f18a4718a0fb888b550f0ae2.png

2de4ee3fefa8ced3b7fa82af17a2e4d7_1a43b18e47ad45458e37652188fddd19.png


代码流程


※Download the LISA Traffic Sign Dataset, and store it in a directory $LISA_DATA
※cd $LISA_DATA
※Follow instructions in the LISA Traffic Sign Dataset to create 'mergedAnnotations.csv' such that only stop signs and pedestrian ※crossing signs are shown
※cp $ROOT/data_gathering/create_pickle.py $LISA_DATA
※python create_pickle.py
※cd $ROOT
※ln -s $LISA_DATA/resized_images_* .
※ln -s $LISA_DATA/data_raw_*.p .
※python data_prep.py
※This performs box matching between ground-truth boxes and default ※boxes, and packages the data into a format used later in the ※pipeline
※python train.py
※This trains the SSD model
※python inference.py -m demo


效果


如上所述,该SSD实现能够在具有Intel Core i7 6700K的GTX 1080上实现40-45 fps

推理时间是神经网络推理时间和非最大抑制(NMS)时间的总和。总的来说,神经网络推断时间明显小干NMS时间,神经网络推理时间通常在7-8ms之间,而NMS时间在15-16ms之间。这里实现的NMS算法尚未优化,仅在CPU上运行,因此可以在那里进一步努力提高性能。

26490fbce4c13ae18ee4a75892f17ddb_32cb445eab4340c3b49b3dd3c2662235.png

78007217c9ed3fa8988a0fbc5c509ef7_000cc8d737e04aa993f2ba2d57ae3144.png


数据集


整个LISA交通标志数据集由47个不同的交通标志类别组成。因为我们只关注这些类的子集,所以我们只使用LSA数据集的子集。此外,我们忽略了没有找到匹配的默认框的所有训练样本,从而进一步减小了数据集的大小。由于这个过程,我们最终只能处理很少的数据。

为了改进这一问题,我们可以执行图像数据增强,和/或在更大的数据集上预训练模型(例如 VOC2012、ILSVRC)

下载链接:】(https://cvrr.ucsd.edu/LISA/lisa-traffic-sign-dataset.html)


代码可私信

代码可私信

代码可私信


相关文章
|
存储 算法 数据可视化
检测交通视频中的汽车
使用工具箱可视化和分析视频或图像序列,检测交通视频中的汽车。
163 0
|
2月前
|
传感器 监控 搜索推荐
智能服装:集成健康监测功能的纺织品——未来穿戴科技的新篇章
【10月更文挑战第7天】智能服装作为穿戴科技的重要分支,正以其独特的技术优势和广泛的应用前景,成为未来科技发展的亮点之一。它不仅改变了我们对服装的传统认知,更将健康监测、运动训练、医疗康复等功能融为一体,为我们的生活带来了更多的便利和可能。随着技术的不断进步和市场的日益成熟,我们有理由相信,智能服装将成为未来穿戴科技的新篇章,引领我们走向更加健康、智能、可持续的生活方式。
|
5月前
|
传感器 人工智能 编解码
无人驾驶汽车将彻底改变我们的交通方式
无人驾驶汽车将彻底改变我们的交通方式
|
7月前
|
存储 数据可视化 数据库
C++医学临床影像信息管理系统源码
集成三维影像后处理功能,包括三维多平面重建、三维容积重建、三维表面重建、三维虚拟内窥镜、最大/小密度投影、心脏动脉钙化分析等功能。
72 3
|
7月前
|
算法 搜索推荐 测试技术
基于智能推荐的健身场所的设计与实现(论文+源码)_kaic
基于智能推荐的健身场所的设计与实现(论文+源码)_kaic
|
机器学习/深度学习 决策智能 计算机视觉
计算机视觉实战(十三)停车场车位识别(附完整代码)
计算机视觉实战(十三)停车场车位识别(附完整代码)
220 0
|
数据采集 自动驾驶 算法
无人驾驶车辆中Python爬虫的抓取与决策算法研究
无人驾驶车辆中Python爬虫的抓取与决策算法研究
|
存储 移动开发 人机交互
全院级PACS系统源码,涵盖放射、超声、内镜、病理以病人为中心的数据整合
强大的阅片工具,不仅提供常规测量、调节功能,并且内置包括MPR、CMPR、VR等强大的三维处理功能,解决放射科日常重建需求。提供丰富诊断模板的基础上支持公有、私有模板的自定义编辑功能,患者自助应用通过虚拟打印技术,提供基于报告、胶片的患者自助打印功能
129 0
|
监控 安全 5G
北理工开发5G无人配送车,支持人脸识别和体温检测,已部署中关村校区
北理工开发5G无人配送车,支持人脸识别和体温检测,已部署中关村校区
171 0
|
自动驾驶 安全 定位技术
特斯拉自动驾驶新能力:识别红绿灯停车标识;尝鲜车主:实用好用
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 特斯拉,现在可以买到的最有智能化体验的汽车。 撇开安全话题,自动驾驶的能力和功能,一直走在行业最前沿。
特斯拉自动驾驶新能力:识别红绿灯停车标识;尝鲜车主:实用好用
下一篇
DataWorks