【Pytorch神经网络理论篇】 03 Pytorch快速上手(三)张量的数据操作

简介: view()只能作用于整块内存上的张量,若对于非连续内存上的张量则不可以用该函数处理。也无法对transpose()与permute()等改变后的张量再进行变化。

bcb503cecfe948c5a1a62c784777f81d.png


1 张量的数据操作


1.1 torch.reshape()实现数据维度变化


import torch
a = torch.tensor([[1,2],[3,4]])
print(torch.reshape(a,(1,-1))) # 将其转化为只有1行数据的张量,参数-1表示自动计算
# tensor([[1, 2, 3, 4]])
print(a.reshape((1,-1))) # # 将其转化为只有1行数据的张量,参数-1表示自动计算
# tensor([[1, 2, 3, 4]])
print(a.view((1,-1))) # # 将其转化为只有1行数据的张量,参数-1表示自动计算
# tensor([[1, 2, 3, 4]])


1.2 张量数据的矩阵转置


import torch
b = torch.tensor([[5,6,7],[2,8,0]]) # 定义二维张量
print(torch.t(b)) # 转置矩阵
# 输出 tensor([[5, 2],
#         [6, 8],
#         [7, 0]])
print(torch.transpose(b,dim0=1,dim1=0)) # 转置矩阵,将原有数据的第1个维度切换到第0个维度
# 输出 tensor([[5, 2],
#         [6, 8],
#         [7, 0]])
print(b.permute(1,0)) # 转置矩阵,将原有数据的第1个维度切换到第0个维度
# 输出 tensor([[5, 2],
#         [6, 8],
#         [7, 0]])


1.3 view()与contignous()方法


1.3.1 概述


view()只能作用于整块内存上的张量,若对于非连续内存上的张量则不可以用该函数处理。也无法对transpose()与permute()等改变后的张量再进行变化。


view()需要与contiguous()进行连用,进而保证该张量在同一个内存块中。


1.3.2 代码


import torch
b = torch.tensor([[5,6,7],[2,8,0]]) #定义二维张量
print(b.is_contiguous()) #判断内存是否连续
# 输出 True
c = b.transpose(0,1)
print(c.is_contiguous()) #判断内存是否连续
# 输出 False
print(c.contiguous().is_contiguous()) #判断内存是否连续
# 输出 True
print(c.contiguous().view(-1)) #判断内存是否连续
# 输出 tensor([5, 2, 6, 8, 7, 0])


1.4 torch.cat()数据拼接函数


1.4.1 概述


torch.cat()函数会实现将两个张量沿着指定方向进行拼接===》在神经网络中较为常见


1.4.2 代码


import torch
a = torch.tensor([[1,2],[3,4]]) #定义二维张量
b = torch.tensor([[5,6],[7,8]])
print(torch.cat([a,b],dim=0)) #沿着0维度进行连接
# 输出 tensor([[1, 2],
#         [3, 4],
#         [5, 6],
#         [7, 8]])
print(torch.cat([a,b],dim=1)) #沿着1维度进行连接
# 输出 tensor([[1, 2, 5, 6],
#         [3, 4, 7, 8]])


1.5 torch.chunk()实现数据的均匀分割


1.5.1 概述


torch.chunk()将一个多维张量按照指定的维度和拆分数量进行分割,其返回值是元组,不可修改。


1.5.2 代码


import torch
a = torch.tensor([[1,2],[3,4]])
print(torch.chunk(a,chunks=2,dim=0)) #将张量a按照第0维度分成两个部分
# 输出 (tensor([[1, 2]]), tensor([[3, 4]]))
print(torch.chunk(a,chunks=2,dim=1)) #将张量a按照第1维度分成两个部分
# 输出 (tensor([[1],[3]]), tensor([[2],[4]]))


1.6 torch.split()实现数据的不均匀分割


import torch
b = torch.tensor([[5,6,7],[2,8,0]])
#按照第1维度分成2个部分
### split_size_or_sections 将按照指定的元素个数对张量数据进行数据拆分,不满足个数的剩余数据将会作为分割数据的最后一部分
print(torch.split(b,split_size_or_sections=(1,2),dim=1) )
# 输出 (tensor([[5],[2]]), tensor([[6, 7],[8, 0]]))


1.7 torch.gather()对张量数据进行检索


1.7.1 概述


torch.gather()对于张量数据中的值按照指定的索引与顺序进行排列,index参数必须是张量类型,要与输入的维度相同


1.7.2 代码


import torch
b = torch.tensor([[5,6,7],[2,8,0]])
# 沿着第1维度,按照index的形状进行取值排列
print(torch.gather(b,dim=1,index=torch.tensor([[1,0],[1,2]])))
#输出 tensor([[6, 5],[8, 0]])
# 沿着第0维度,按照index的形状进行取值排列
print(torch.gather(b,dim=0,index=torch.tensor([[1,0,0]])))
#输出 tensor([[2, 6, 7]])
print(torch.index_select(b,dim=0,index=torch.tensor(1))) #取出整行或者整列
#输出 tensor([[2, 8, 0]])


1.8 按照指定的阈值对于张量数据进行过滤展示


1.8.1 概述


torch.gt():大于


torch.ge():大于或等于


torch.lt():小于


torch.le():小于或等于


1.8.2 代码


import torch
b = torch.tensor([[1,2],[2,8]])
mask = b.ge(2) #大于或者等于2
print(mask)
# 输出 tensor([[False,  True],
#         [ True,  True]])
print(torch.masked_select(b,mask))
# 输出 tensor([2, 2, 8])


1.9 找出张量中的非零数值的索引


import torch
eye = torch.eye(3) # 生成一个对角矩阵
print(eye)
# 输出 tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])
print(torch.nonzero(eye)) # 找出对角矩阵中的非零值索引
# 输出 tensor([[0, 0],
#         [1, 1],
#         [2, 2]])


1.10 根据条件实现对张量的数值取值


import torch
b = torch.tensor([[5,6,7],[2,8,0]])
c = torch.ones_like(b) #生成数值均为1的矩阵
print(c)
# 输出 tensor([[1, 1, 1],
#           [1, 1, 1]])
print(torch.where(b>5,b,c)) #将b中大于5的元素提取出来,值不大于5的部分从c中取得
# 输出 tensor([[1, 6, 7],
#            [1, 8, 1]])


1.11 根据阈值进行数据截断


1.11.1 概述


根据阈值进行数据截断===》用于梯度计算中,为梯度设置一个固定的阈值,避免训练过程中的梯度爆炸。


梯度爆炸:模型每次训练的调整值变得很大,最终导致训练结果难以收敛。


1.11.2 代码


import torch
a = torch.tensor([[1,2],[3,4]])
b = torch.clamp(a,min=2,max=3) #按照最小值2,最大值3进行截断
print(b)
# 输出 tensor([[2, 2],
#              [3, 3]])


1.12 获取数据中的最大值、最小值索引


1.12.1 概述


torch.argmax():返回最大索引


torch.argmin():返回最小索引


1.12.2 代码


import torch
a = torch.tensor([[1,2],[3,4]])
print(torch.argmax(a,dim=0)) # 按照第0维度找出最大索引值
# 输出 tensor([1, 1])
print(torch.argmin(a,dim=1)) # 按照第1维度找出最小索引值
# 输出 tensor([0, 0])
print(torch.max(a,dim=0)) # 按照第0维度找出最大索引值与对应数值
# 输出  torch.return_types.max(values=tensor([3, 4]),indices=tensor([1, 1]))
print(torch.min(a,dim=1)) # 按照第1维度找出最小索引值与对应数值
# 输出 torch.return_types.min(values=tensor([1, 3]),indices=tensor([0, 0]))
目录
相关文章
|
2月前
|
监控 安全 网络安全
云计算与网络安全:保护数据的关键策略
【9月更文挑战第34天】在数字化时代,云计算已成为企业和个人存储、处理数据的优选方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨云计算环境中的网络安全挑战,并提供一系列策略来加强信息安全。从基础的数据加密到复杂的访问控制机制,我们将一探究竟如何在享受云服务便利的同时,确保数据的安全性和隐私性不被侵犯。
67 10
|
3月前
|
存储 安全 网络安全
云计算与网络安全:守护数据,构筑未来
在当今的信息化时代,云计算已成为推动技术革新的重要力量。然而,随之而来的网络安全问题也日益凸显。本文从云服务、网络安全和信息安全等技术领域展开,探讨了云计算在为生活带来便捷的同时,如何通过技术创新和策略实施来确保网络环境的安全性和数据的保密性。
|
28天前
|
安全 算法 网络安全
量子计算与网络安全:保护数据的新方法
量子计算的崛起为网络安全带来了新的挑战和机遇。本文介绍了量子计算的基本原理,重点探讨了量子加密技术,如量子密钥分发(QKD)和量子签名,这些技术利用量子物理的特性,提供更高的安全性和可扩展性。未来,量子加密将在金融、政府通信等领域发挥重要作用,但仍需克服量子硬件不稳定性和算法优化等挑战。
|
1月前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
17天前
|
弹性计算 安全 容灾
阿里云DTS踩坑经验分享系列|使用VPC数据通道解决网络冲突问题
阿里云DTS作为数据世界高速传输通道的建造者,每周为您分享一个避坑技巧,助力数据之旅更加快捷、便利、安全。本文介绍如何使用VPC数据通道解决网络冲突问题。
66 0
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
2月前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
62 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:张量数值计算
探索PyTorch:张量数值计算
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
探索PyTorch:张量的创建和数值计算
探索PyTorch:张量的创建和数值计算