# 【深度学习】:《PyTorch入门到项目实战》第八天:权重衰退(含源码)

简介: 前一节我们描述了过拟合的问题,虽然我们可以通过增加更多的数据来减少过拟合,但是成本较高,有时候并不能满足。因此现在我们来介绍一些正则化模型的方法。在深度学习中,权重衰退是使用较为广泛的一种正则化方法。具体原理如下。
  • ✨本文收录于【深度学习】:《PyTorch入门到项目实战》专栏,此专栏主要记录如何使用PyTorch实现深度学习笔记,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

参考资料:本专栏主要以沐神《动手学深度学习》为学习资料,记录自己的学习笔记,能力有限,如有错误,欢迎大家指正。同时沐神上传了的教学视频和教材,大家可以前往学习。

请添加图片描述

1.基本概念

前一节我们描述了过拟合的问题,虽然我们可以通过增加更多的数据来减少过拟合,但是成本较高,有时候并不能满足。因此现在我们来介绍一些正则化模型的方法。在深度学习中,权重衰退是使用较为广泛的一种正则化方法。具体原理如下。
我们引入L2正则化,此时我们的损失函数为:

$$ \frac{1}{2m}\sum_{i=1}^{n}(W^TX^{(i)}+b-y^{(i)})^2+\frac{\lambda}{2}||W||^2 $$

其中,$\frac{\lambda}{2}||W||^2$称为惩罚项
对新的随时函数求梯度得到:

$$ \frac{dL}{dw}+\lambda W $$

和我们之前更新参数一样,L2正则化回归的梯度下降更新如下:

$$ w := (1-\eta\lambda)w-\eta \frac{dL}{dw} $$

通常$\eta\lambda<1$,因此在深度学习中我们称为权重衰退。
注意事项:

  • 1.我们只对权重W进行惩罚,而不对b进行惩罚
  • 2.$\lambda$是一个超参数,值越大,则对权重的衰退越大,当趋近无穷时,权重趋近0,相反如果值为0,则没有约束。
  • 3.L2正则化不能实现稀疏的结果,如果想要减少特征,使用L1正则化进行特征选择。
    下面通过具体代码来看看具体是如何实现的

2.代码实现

和上一章一样,照样使用模拟数据集,生成数据集如下:

$$ y = 0.1 + \sum_{i = 1}^d 0.01 x_i + \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 0.01^2) $$

2.1 生成数据集

这里假设真实的数据如下:

$$ y = 0.1 + \sum_{i = 1}^{200} 0.01 x_i + \epsilon $$

下面我们先生成数据集

"""导入相关库"""
import torch
from d2l import torch as d2l
from torch import nn
%matplotlib inline
# 定义相关函数。这是沐神教材中的函数,如果下载了d2l可以直接导入
def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))
def load_array(data_arrays, batch_size, is_train=True): 
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)#将数据转换为tensor
    return data.DataLoader(dataset, batch_size, shuffle=is_train)
"""生成数据集"""
n_train, n_test, num_inputs, batch_size = 50, 100, 200, 5#定义相关训练集,验证集,输入变量,以及batch的大小
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.1#定义真实的参数
train_data = d2l.synthetic_data(true_w, true_b, n_train)#生成模拟数据,具体函数如下
train_iter = d2l.load_array(train_data, batch_size)#加载训练集数据
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

根据上一章的介绍,我们知道样本越小越容易造成过拟合,这里我们将样本量设置为100,但是参数却有200个,这种情况下p>n,很容易造成过拟合现象。

2.2 初始化参数

生成数据集后,下一步就是初始化参数,这里我们对于权重$w$初始化为标准正态分布,偏差$b$初始化为0

def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)#生成标准正态分布
    b = torch.zeros(1, requires_grad=True)#生成全部为0的数据
    return [w, b]

2.3 定义惩罚项

这里我们定义L2正则化,具体代码如下所示

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

2.3 训练

这里和之前线性回归训练基本一致,唯一不同的是多了一个惩罚项,因此lambd为超参数

def train(lambd):
    w, b = init_params()#初始化参数
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss#这里使用匿名函数,定义了两个函数,一个是求解模型结果,一个是损失函数
    num_epochs, lr = 100, 0.003
    """定义相关图形设置"""
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    """模型训练,更新参数"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        """绘制训练误差和测试误差"""
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

首先,我们来看看不增加惩罚项的情况,即和我们之前的线性回归一致,此时,存在严重的过拟合现象,如下图所示

train(lambd=0)

image-20220527161148919

从上图结果来看,存在严重的过拟合问题,验证误差远远比训练误差大。下面我们来看看lambd为5的情况下的结果

train(lambd=5)

image-20220527161308660

可以看出,随着lambd的增加,验证误差不断减少,但是还是存在过拟合。

def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))#定义线性神经网络
    for param in net.parameters():
        param.data.normal_()#初始化参数
    loss = nn.MSELoss(reduction='none')#定义MSE损失函数
    num_epochs, lr = 100, 0.003#定义训练次数和学习率
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)#定义权重衰退,其中超参数为wd
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])#绘图
    """训练模型"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)

image-20220527162054063

train_concise(3)

image-20220527162020261

3.拓展部分

沐神的参考教材中使用的是L2正则化,我们接下来看看使用L1正则化的效果,首先需要定义一下L1正则化,如下所示:

$$ \frac{1}{2m}\sum_{i=1}^{n}(W^TX^{(i)}+b-y^{(i)})^2+{\lambda}|W| $$

def l1_penalty(w):
    return torch.sum(torch.abs(w))
def train_l1(lambd):
    w, b = init_params()#初始化参数
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss#这里使用匿名函数,定义了两个函数,一个是求解模型结果,一个是损失函数
    num_epochs, lr = 100, 0.003
    """定义相关图形设置"""
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    """模型训练,更新参数"""
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L1范数惩罚项,
            # 广播机制使l1_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l1_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        """绘制训练误差和测试误差"""
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train_l1(1)

image-20220527162002373

可以看出使用L1正则化,当lambd为1的时候,就可以使得验证误差基本等于训练误差。其实正如我们之前说的,L2正则化只能将参数压缩,但是不能去除为0,我们这个模拟数据集中,p为200,n为100,p>>n,此时使用L1正则化可以使得某些特征的系数为0,从而更好的缓解过拟合问题。 本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!
相关文章
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
1月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
80 3
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
55 7
|
3月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
458 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
4月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
266 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
45 1
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类