基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

简介: 基于Django 框架搭建算法学习系统,包含KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络 毕业设计附完整代码

52863fce4c6dac519c9cf4205f172eb7.pngdb5d12dc79ee1e86b2f4f2ddeaea13e1.png


完整代码:https://download.csdn.net/download/qq_38735017/87425744

kNN 简介


kNN 原理 :存在一个样本数据集合,也称作训练集或者样本集,并且样本集中每个数据都存在标签,即样本集实际上是 每条数据 与 所属分类 的 对应关系。 核心思想 :若输入的数据没有标签,则新数据的每个特征与样本集中数据对应的特征进行比较,该算法提取样本集中特征最相似数据(最近邻)的分类标签。 k :选自最相似的 k 个数据,通常是不大于 20 的整数,最后选择这 k 个数据中出现次数最多的分类,作为新数据的分类。


k-近邻算法的一般流程


1.收集数据:可以使用任何方法,
2.准备数据:距离计算所需的数值,最好是结构化的数据格式。
3.分析数据:可以使用任何方法。
4.训练算法:此不走不适用于k-近邻算法。
5.测试算法:计算错误率。
6.使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类之行后续的处理。

example1

python 导入数据

from numpy import *
import operator
def    createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

python 处理数据

# 计算已知类别数据集中的点与当前点之间的距离(欧式距离)
# 按照距离递增次序排序
# 选取与当前点距离最小的K个点
# 确定前K个点所在类别的出现频率
# 返回前k个点出现频率最高的类别最为当前点的预测分类
# inX输入向量,训练集dataSet,标签向量labels,k表示用于选择最近邻的数目
def    clissfy0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat ** 0.5
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteLabel = labels[sortedDistIndicies[i]]
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(),
        key = operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]

python 数据测试

import kNN
from numpy import *
dataSet,labels = createDataSet()
testX = array([1.2,1.1])
k = 3
outputLabelX = classify0(testX,dataSet,labels,k)
testY = array([0.1,0.3])
outputLabelY = classify0(testY,dataSet,labels,k)
print('input is :',testX,'output class is :',outputLabelX)
print('input is :',testY,'output class is :',outputLabelY)


python 结果输出

1. ('input is :', array([ 1.2,  1.1]), 'output class is :', 'A')
2. ('input is :', array([ 0.1,  0.3]), 'output class is :', 'B')


example2

使用 k-近邻算法改进约会网站的配对效果

处理步骤

1.收集数据:提供文本文件
2.准备数据:使用python解析文本文件
3.分析数据:使用matplotlib画二维扩散图
4.训练算法:此步骤不适用与k-近邻算法
5.测试算法:使用提供的部份数据作为测试样本
6:使用算法:输入一些特征数据以判断对方是否为自己喜欢的类型

python 整体实现

# coding:utf-8fromnumpyimport*importoperatorfromkNNimportclassify0importmatplotlib.pyplotaspltdeffile2matrmix(filename):fr=open(filename)arrayLines=fr.readlines()numberOfLines=len(arrayLines)returnMat=zeros((numberOfLines,3))classLabelVector=[]index=0forlineinarrayLines:line=line.strip()listFromLine=line.split('\t')returnMat[index,:]=listFromLine[0:3]classLabelVector.append(int(listFromLine[-1]))index+=1returnreturnMat,classLabelVectordefautoNorm(dataSet):minVals=dataSet.min(0)maxVals=dataSet.max(0)ranges=maxVals-minValsnormDataSet=zeros(shape(dataSet))m=dataSet.shape[0]normDataSet=dataSet-tile(minVals,(m,1))normDataSet=normDataSet/tile(ranges,(m,1))returnnormDataSet,ranges,minValsdefdatingClassTest():hoRatio=0.10datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)m=normMat.shape[0]numTestVecs=int(m*hoRatio)errorCount=0.0foriinrange(numTestVecs):classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)print('the classifier came back with: %d, the real answer is: %d'%(classifierResult,datingLabels[i]))if(classifierResult!=datingLabels[i]):errorCount+=1.0print('the total error rate is: %f'%(errorCount/float(numTestVecs)))defclassifyPerson():resultList=['not at all','in small doses','in large doses']percentTats=float(raw_input('percentage of time spent playing video games?'))ffMiles=float(raw_input('frequent flier miles earned per year?'))iceCream=float(raw_input('liters of ice cream consumed per year?'))datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')normMat,ranges,minVals=autoNorm(datingDataMat)inArr=array([ffMiles,percentTats,iceCream])classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)print('you will probably like this person:',resultList[classifierResult-1])datingDataMat,datingLabels=file2matrmix('datingTestSet2.txt')classifyPerson()fig=plt.figure()ax=fig.add_subplot(111)ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))plt.show()


K-最近邻算法总结


k 近邻算法是最简单有效的分类算法,必须全部保存全部数据集,如果训练数据集很大,必须使用大量的存储空间,同时由于必须对数据集中的每个数据计算距离值,实际使用可能非常耗时。 k 近邻算法无法给出任何数据的基础结构信息,我们无法知晓平均实例样本和典型实例样本具有神秘特征。


决策树


决策树 流程图正方形代表判断模块,椭圆形代表终止模块,从判断模块引出的左右箭头称作分支,它可以到达另一个判断模块活着终止模块。 决策树 [优点]:计算复杂度不高,输出结果易于理解,对于中间值的缺失不敏感,可以处理不相关特征数据。 决策树[缺点]:可能会产生过度匹配的问题。 决策树[适用数据类型]:数值型和标称型。


决策树的一般流程


(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们需要检验图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:使用于任何监督学习算法。

信息增益


划分数据集的最大原则:将无序的数据集变的有序。 判断数据集的有序程度:信息增益(熵),计算每个特征值划分数据集后获得的信息增益,获得信息增益最高的特征就是最好的选择。 信息增益[公式]:


image.png


其中 n 是分类的数目。

python 决策树

计算给定数据集的信息熵

frommathimportlogdefcalcShannonEnt(dataSet):numEntries=len(dataSet)labelCounts={}forfeatVecindataSet:currentLabel=featVec[-1]ifcurrentLabelnotinlabelCounts.keys():labelCounts[currentLabel]=0labelCounts[currentLabel]+=1shannonEnt=0.0forkeyinlabelCounts:prob=float(labelCounts[key])/numEntriesshannonEnt-=prob*log(prob,2)returnshannonEntdefcreateDataSet():dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no'],]labels=['no surfacing','flippers']returndataSet,labelsmyDat,labels=createDataSet()print(myDat)print(labels)shannonEnt=calcShannonEnt(myDat)print(shannonEnt)

划分数据集


importdtreedefsplitDataset(dataSet,axis,value):retDataSet=[]forfeatVecindataSet:iffeatVec[axis]==value:reducedFeatVec=featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)returnretDataSetmyData,labels=dtree.createDataSet()print(myData)retDataSet=splitDataset(myData,0,1)print(retDataSet)retDataSet=splitDataset(myData,0,0)print(retDataSet)

选择最好的数据划分方式

defchooseBestFeatureToSplit(dataSet):numFeatures=len(dataSet[0])-1baseEntropy=dtree.calcShannonEnt(dataSet)bestInfoGain=0.0bestFeature=-1foriinrange(numFeatures):featList=[example[i]forexampleindataSet]uniqueVals=set(featList)newEntropy=0.0forvalueinuniqueVals:subDataSet=splitDataset(dataSet,i,value)prob=len(subDataSet)/float(len(dataSet))newEntropy+=prob*dtree.calcShannonEnt(subDataSet)infoGain=baseEntropy-newEntropyif(infoGain>bestInfoGain):bestInfoGain=infoGainbestFeature=ireturnbestFeaturemyData,labels=dtree.createDataSet()print('myData:',myData)bestFeature=chooseBestFeatureToSplit(myData)print('bestFeature:',bestFeature)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('bestFeature:', 0)
结果分析
运行结果表明第0个特征是最好用于划分数据集的特征,即数据集的的第一个参数,比如在该数据集中以第一个参数特征划分数据时,第一个分组中有3个,其中有一个被划分为no,第二个分组中全部属于no;当以第二个参数分组时,第一个分组中2个为yes,2个为no,第二个分类中只有一个no类。

递归构建决策树


工作原理:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于 2 个,因此可能存在大于 2 个分支的数据集划分,在第一次划分后,数据将被传向树分支的下一个节点,在这个节点上我们可以再次划分数据。 递归条件:程序遍历完所有划分数据集的属性,或者没个分支下的所有实例都具有相同的分类。


构建递归决策树

importdtreeimportoperatordefmajorityCnt(classList):classCount={}forvoteinclassList:ifvotenotinclassCount.keys():classCount[vote]=0classCount[vote]+=1sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)returnsortedClassCount[0][0]defcreateTree(dataSet,labels):classList=[example[-1]forexampleindataSet]ifclassList.count(classList[0])==len(classList):returnclassList[0]iflen(dataSet[0])==1:returnmajorityCnt(classlist)bestFeat=chooseBestFeatureToSplit(dataSet)bestFeatLabel=labels[bestFeat]myTree={bestFeatLabel:{}}del(labels[bestFeat])featValues=[example[bestFeat]forexampleindataSet]uniqueVals=set(featValues)forvalueinuniqueVals:subLabels=labels[:]myTree[bestFeatLabel][value]=createTree(splitDataset(dataSet,bestFeat,value),subLabels)returnmyTreemyData,labels=dtree.createDataSet()print('myData:',myData)myTree=createTree(myData,labels)print('myTree:',myTree)
结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('myTree:', {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}})


结果分析
myTree 包含了树结构信息的前套字典,第一个关键字no surfacing是第一个划分数据集的特征名称,值为另一个数据字典,第二个关键字是no surfacing特征划分的数据集,是no surfacing的字节点,如果值是类标签,那么该节点为叶子节点,如果值是另一个数据字典,那么该节点是个判断节点,如此递归。

测试算法:使用决策树执行分类

使用决策树的分类函数

importtreeplotterimportdtreedefclassify(inputTree,featLabels,testVec):firstStr=inputTree.keys()[0]secondDict=inputTree[firstStr]featIndex=featLabels.index(firstStr)forkeyinsecondDict.keys():iftestVec[featIndex]==key:iftype(secondDict[key]).__name__=='dict':classLabel=classify(secondDict[key],featLabels,testVec)else:classLabel=secondDict[key]returnclassLabelmyDat,labels=dtree.createDataSet()print(labels)myTree=myTree=treeplotter.retrieveTree(0)print(myTree)print('classify(myTree,labels,[1,0]):',classify(myTree,labels,[1,0]))print('classify(myTree,labels,[1,1]):',classify(myTree,labels,[1,1]))
结果输出
['no surfacing', 'flippers']
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}
('classify(myTree,labels,[1,0]):', 'no')
('classify(myTree,labels,[1,1]):', 'yes')

存储决策树


由于决策树的构造十分耗时,所以用创建好的决策树解决分类问题可以极大的提高效率。因此需要使用 python 模块 pickle 序列化对象,序列化对象可以在磁盘上保存对象,并在需要的地方读取出来,任何对象都可以执行序列化操作。

# 使用pickle模块存储决策树importpickledefstoreTree(inputTree,filename):fw=open(filename,'w')pickle.dump(inputTree,fw)fw.close()defgrabTree(filename):fr=open(filename)returnpickle.load(fr)


结果展示(Kmeans):


3803651c1798f7347261356b451463e3.png

6ccb6c082e6b39ffbb16092ef6de0d51.png




相关文章
|
2天前
|
搜索推荐 数据挖掘 数据管理
短链接系统精选:打造高效网络分享体验
在互联网时代,短链接系统扮演着重要角色,将长网址转化为简洁、易记的字符串。本文介绍了四款知名服务:行业标准的Bitly,提供详细统计和定制功能;简洁的TinyURL,操作简便;品牌化的Rebrandly,支持自定义域名以增强营销效果;以及DZ_tech/ShortURL,提供轻量级的私有部署方案。选择合适的短链接服务能优化用户体验,助力数据分析和营销。
|
2天前
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的网络办公系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的网络办公系统的详细设计和实现(源码+lw+部署文档+讲解等)
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:漏洞、加密与安全意识的探讨移动应用与系统:探索未来的无限可能
【5月更文挑战第31天】在数字化时代,网络安全与信息安全已经成为我们生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术以及安全意识的重要性,以期提高公众对网络安全的认识和防范意识。
|
2天前
|
JavaScript Java 测试技术
Java项目基于ssm+vue.js的网络类课程思政学习系统附带文章和源代码设计说明文档ppt
Java项目基于ssm+vue.js的网络类课程思政学习系统附带文章和源代码设计说明文档ppt
7 0
|
3天前
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的创新改进和实战案例,包括多维协作注意力(MCA)机制,它通过三分支架构同时处理通道、高度和宽度注意力,提高CNN性能。MCA设计了自适应组合和门控机制,增强特征表示,且保持轻量化。该模块适用于各种CNN,实验证明其在图像识别任务上的优越性。此外,文章还展示了如何在YOLOv8中引入MCA层的代码实现和相关任务配置。
|
3天前
|
JavaScript Java 测试技术
基于ssm+vue.js的网络音乐系统附带文章和源代码设计说明文档ppt
基于ssm+vue.js的网络音乐系统附带文章和源代码设计说明文档ppt
8 0
|
3天前
|
机器学习/深度学习 人工智能 算法
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
22 0
|
19天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
4天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。