Kubernetes HPA 的三个误区与避坑指南

本文涉及的产品
云原生网关 MSE Higress,422元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 云计算带来的优势之一便是弹性能力,云原生场景下 Kubernetes 提供了水平弹性扩容能力(HPA),让应用可以随着实时指标进行扩/缩。然而 HPA 的实际工作情况可能和我们直观预想的情况是不一样的,这里面存在一些认知误区。本文总结了一下 EDAS 用户在使用 HPA 时常遇到的三个认知误区。

作者:之卫


前言


云计算带来的优势之一便是弹性能力,云原生场景下 Kubernetes 提供了水平弹性扩容能力(HPA),让应用可以随着实时指标进行扩/缩。然而 HPA 的实际工作情况可能和我们直观预想的情况是不一样的,这里面存在一些认知误区。本文总结了一下 EDAS 用户在使用 HPA 时常遇到的三个认知误区,具体如下:


误区一:HPA 存在扩容死区


现象:当 Request=Limit 时,期望利用率超过 90%时,无法正常扩容。


原因剖析:HPA 中存在容忍度(默认为 10%),指标变化幅度小于容忍度时,HPA 会忽略本次扩/缩动作。若当期望利用率为 90%时,则实际利用率在 81%-99%之间,都会被 HPA 忽略。


避坑指南:当 Request=Limit 时,避免设置过高的期望利用率,一来避免扩容死区;二来被动扩容有一定的迟滞时间,留下更多的缓冲余量以应对突增流量。


1.jpeg


误区二:误解利用率计算方法,HPA 扩容与预期使用量不符


现象:当 Limit > Request 时,配置 50%的利用率,使用量未达到 Limit 的 50%便扩容。


原因剖析:HPA 计算利用率是基于 Request 计算,当 Limit > Request 时,实际利用率是可以超过 100%。


避坑指南:对于较为重要的应用,应当设置 Request=Limit 保证资源的独占。对于可以容忍资源共享的应用,对应的期望利用率也不应设置的过高,在集群资源紧张时,超量使用资源的 Pod 很有可能会被杀死,从而造成服务中断。


2.jpeg


误区三:弹性行为总是滞后的,扩缩行为与心理预期不符


现象:指标突增时,HPA 不会立刻扩容,且扩容可能是分多次进行,最终稳定时的实例数也与预期不同。


原因剖析:HPA 的设计架构决定了,HPA 扩/缩容总是滞后的,且扩/缩容收到弹性行为(behavior)与容忍度共同作用。其中弹性行为限制了扩/缩容速率,不会一口气扩/缩到期望实例数。而容忍度会忽略指标的小幅度变化,从而导致在多次扩容的场景下,最终计算的实例数可能与一开始计算出的实例数不同。


避坑指南:阅读下文了解一下 HPA 工作原理,配置合理的弹性行为(behavior)。


3.jpeg


HPA 工作机理


在打破认知误区前,我们有必要梳理一下 HPA 的工作机理。


4.jpeg


如图所示,HPA 控制器执行弹性功能主要分为四个步骤:


  1. 监听 HPA 资源,一旦生成 HPA 资源或者是更改 HPA 配置,HPA 控制器能及时感知并调整。 
  2. 从 Metrics API 获取对应的指标数据,这里的 Metrics Server 又可以分为三类:
  1. Kubernetes MetricServer:提供容器级别CPU/内存使用量
  2. Custom MetricServer:提供来自Kubernetes集群自定义资源的指标数据
  3. External MetricServer:提供来自Kubernetes集群外的指标数据  
  1. 每个指标项单独计算期望实例数,最后取所有期望实例数中的最大值,作为当前工作负载的期望实例数 
  2. 调整对应的工作负载 


其中步骤 2-4 约每 15 秒执行一次,如需改变时间周期,可以调整 KCM 的配置参数--horizontal-pod-autoscaler-sync-period。


数据源


5.jpeg


如上图所示,HPA 目前提供了五种指标来源,以及三种指标服务(MetricsServer),简单介绍如下:


  1. Resource:提供 Pod 级别的 CPU/内存使用量
  2. ContainerResource:提供容器级别的 CPU/内存使用量
  3. Object:提供 Kubernetes 集群内任意资源的相关指标
  4. Pods:提供 Kubernetes集群内 pod 相关的指标
  5. External:提供 Kubernetes 集群外的指标数据 


值得一提的是,在自建 Kubernetes 场景下,这三种 MetricsServer 都需要额外安装,它们均运行于 KCM 之外。下表列举了几种 Kubernetes 集群 MetricsServer 的部署情况。



自建Kubernetes 阿里云容器服务 EDAS托管集群
Kubernetes MetricsServer 手动安装 自动安装 自动安装
Custom MetricsServer(如Prometheus Adapter) 手动安装 手动安装 手动安装
External MetricsServer(如KEDA) 手动安装 手动安装 自动安装


指标计算方法


HPA 提供了三种期望值类型:


  1. 总量(Value)
  2. 平均量(AverageValue)= 总量 / 当前实例数
  3. 利用率(Utilization)= 平均量 / Request 


值得一提的是,利用率是基于 Request 进行计算的,所以没有设置 Request 的场景下,HPA 可能无法正常工作。


下图介绍了五种指标来源支持的期望类型,不难看出所有指标来源都支持平均量。


6.jpeg


对于单个指标的期望实例数计算规则如下:


7.png


这里面引入了容忍度的概念,即认为在期望值附近小范围的抖动是可以容忍忽略的。这个参数的来源是因为指标值是一个一直在抖动变化的值,如果不忽略微小的变动,那么很有可能造成应用不断的扩容缩容,进而影响整个系统的稳定性。


如下图所示,当指标值落入粉色区域内(容忍度范围)时,期望实例数等于当前实例数。粉色区域(容忍度范围)的上下限分别是 0.9 倍期望值与 1.1 倍期望值。


8.jpeg


对于配置了多条指标规则,最终期望实例数计算规则如下:


9.png


其中 target1, ..., target n 分别是每个指标计算出来的期望实例数。


用一句话简要概括计算方法单个指标波动小时忽略不计,多个指标之间取最大值,最终实例数会落在下限和上限之间。


扩缩行为


在某些情况下,指标数据会有一个频繁且大幅度的抖动。如下图所示的一段 CPU 指标数据,存在一些指标抖动或间歇流量下降导致利用率下降,指标的变化范围已经超出了容忍度的范围。此时,从应用稳定性角度来看,我们不期望应用缩容。为了解决这个问题,HPA引入了配置来控制扩缩容,即扩缩行为(behavior),它是在HPA(autoscaling/v2beta2)中引入,要求 Kubernetes 集群版本>=1.18。


10.jpeg


HPA 的弹性行分为扩容行为和缩容行为。行为具体由以下三部分组成:


  • 稳定窗口:稳定窗口会参考过去一段时间计算出的期望实例数,选取极值作为最终结果,从而保证系统在一段时间窗口内是稳定的。对于扩容取极小值,对于缩容取极大值。 
  • 步长策略:限制一段时间内实例变化的范围。由步长类型、步长值、时间周期三个部分组成。值得一提的是时间周期这个概念与上述的稳定窗口是两回事,此处的时间周期定义了回溯多长历史时间,计算实例数变化情况。 
  • 选择策略:用于选取多个步长策略计算后的结果,支持 取最大值、取最小值、关闭 这三种策略。 


11.jpeg

回顾与总结


至此,我们已经大致了解了 HPA 的工作机理。合理利用 HPA 可以有效提升资源利用率,在这之中我们总结了一些注意事项,熟记这些点可以在使用 HPA 时“有效避坑”。


  1. HPA 的设计架构导致了 HPA 只能被动响应指标进行弹性扩缩,这种模式下,弹性滞后是一定存在的。目前阿里云容器服务推出了带预测能力的 AHPA,可以有效减少弹性迟滞。 
  2. HPA 的利用率计算方法是基于 Request,实际利用率/期望利用率超过 100%是正常的,配置较高的期望利用率需要合理规划集群资源和审视相应风险。 
  3. HPA 中的容忍度概念能缓解指标波动带来的系统震荡问题,但与此同时引入的扩容死区问题需要运维人员避开。 
  4. HPA 的设计架构允许扩展各种类型指标,需要开发/安装相应的 MetricsServer,如 EDAS 则为用户提供了微服务 RT 和 QPS 指标。 
  5. HPA 中存在扩缩容行为,即使不配置相应参数也有默认行为,扩容行为的稳定窗口默认是 0,如果应用常因噪声数据造成扩容,可以设置一个较短的扩容稳定窗口规避尖锐噪声。 
  6. 单个 HPA 支持配置多个指标进行弹性,切勿对单个应用配置多个 HPA,会相互影响,导致应用震荡。 


云原生场景下弹性能力更为丰富,可供弹性的指标也更具备业务定制能力。应用 PaaS 平台(如企业级分布式应用服务 EDAS)能结合云厂商在计算、存储、网络上的技术基础能力,能让使用云的成本更低。但是这里对于业务应用会提出一点点挑战(如:无状态/配置代码解耦等等)。从更广的侧面来看,这是云原生时代应用架构面临的挑战。不过应用越来越原生的话,云的技术红利也会离我们越来越近。


参考链接

[1] Prometheus Adapter

https://github.com/kubernetes-sigs/prometheus-adapter


[2] KEDA

https://github.com/kedacore/keda


[3] HorizontalPodAutoscaler Walkthrough

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/


[4] Resource metrics pipeline

https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/


[5] Horizontal Pod Autoscaling

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/


[6] HPA 常见问题与诊断

https://help.aliyun.com/document_detail/186980.html


[7] EDAS 自动弹性扩缩容

https://help.aliyun.com/document_detail/178448.html


扩展阅读

Horizontal Pod Autoscaler with Arbitrary Metrics

https://github.com/kubernetes/design-proposals-archive/blob/main/autoscaling/hpa-v2.md

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
Prometheus Kubernetes 监控
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
|
Prometheus Kubernetes 监控
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
495 1
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
|
Kubernetes 容器 Perl
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
|
Kubernetes 监控 Perl
在K8S中,hpa原理是什么?
在K8S中,hpa原理是什么?
|
Kubernetes 监控 API
在K8S中,如何使用HPA实现自动扩缩容?
在K8S中,如何使用HPA实现自动扩缩容?
|
Prometheus Kubernetes API
在k8S中,HPA V1 V2的区别是什么?
在k8S中,HPA V1 V2的区别是什么?
|
Kubernetes 监控 API
在K8S中,HPA原理是什么?
在K8S中,HPA原理是什么?
|
1月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
246 1
|
1月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
228 89
|
6月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
276 9

热门文章

最新文章