三大微分中值定理证明方法(罗尔定理、拉格朗日中值定理、柯西中值定理)

简介: 三大微分中值定理证明方法(罗尔定理、拉格朗日中值定理、柯西中值定理)

高等数学的学习躲不过中值定理,而这部分内容又是有些难度,由于检索相关三大微分中值定理定理的证明并没有满意的文章,便自己整理了一篇供自己参考,希望也能为各位读者提供一些帮助!


1 罗尔定理


描述

如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。


证明

因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用M 和 m 表示,分两种情况讨论:


  1. 若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。


  1. 若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,

又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f’(ξ)=0。


image.png


助解

  1. 费马引理,总结就一句话:可导函数极值点为零
  2. 若M>m的情况借助图像,便于理解


2 拉格朗日中值定理


描述

image.png


证明

image.png


注:证法不唯一

通过一段时间的中值定理相关证明题的学习,不难发现辅助函数的构造在解题中的重要性。


3 柯西中值定理


image.png


参考链接

1. 知乎拉格朗日定理证明

2. 百度知道

目录
相关文章
|
2月前
一篇文章讲明白LOJ6465.二平方和定理
一篇文章讲明白LOJ6465.二平方和定理
14 0
|
2月前
|
机器学习/深度学习 移动开发 vr&ar
技术心得:可逆矩阵定理
技术心得:可逆矩阵定理
17 0
|
10月前
对偶定理的介绍
对偶定理:问题的对偶性与解的对偶性 一、引言 对偶定理是数学中的一个重要概念,它描述了问题的对偶性与解的对偶性之间的关系。通过对偶定理,我们可以将一个问题转化为其对偶问题,并通过解决对偶问题来解决原问题。本文将介绍对偶定理的概念、证明方法以及应用场景。 二、对偶定理的概念 对偶定理是指在某些情况下,一个问题的对偶问题与原问题具有相同的性质和结构。对偶问题是通过对原问题的变量、约束条件或目标函数进行转换而得到的。对偶定理认为,如果原问题的解存在,则对偶问题的解也存在,并且两个问题的解具有一种对应关系。 三、对偶定理的证明方法 对偶定理的证明方法通常是通过构造一个对偶映射来进行推导。具体步骤
163 0
罗尔(Rolle)、拉格朗日(Lagrange)和柯西(Cauchy)三大微分中值定理的定义
罗尔(Rolle)、拉格朗日(Lagrange)和柯西(Cauchy)三大微分中值定理的定义
罗尔(Rolle)、拉格朗日(Lagrange)和柯西(Cauchy)三大微分中值定理的定义
一文看懂奈奎斯特定理和香农定理
一文看懂奈奎斯特定理和香农定理
170 0
一文看懂奈奎斯特定理和香农定理
L1-1 拉格朗日中值定理 (5 分)
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式。
167 0
|
机器学习/深度学习
【计算机网络】物理层 : 香农定理 ( 噪声 | 信噪比 | 香农定理 | “香农定理“公式 | “香农定理“ 计算示例 | “奈氏准则“ 与 “香农定理“ 对比 与 计算示例)★
【计算机网络】物理层 : 香农定理 ( 噪声 | 信噪比 | 香农定理 | “香农定理“公式 | “香农定理“ 计算示例 | “奈氏准则“ 与 “香农定理“ 对比 与 计算示例)★
514 0
|
机器学习/深度学习
【组合数学】组合存在性定理 ( 三个组合存在性定理 | 有限偏序集分解定理 | Ramsey 定理 | 相异代表系存在定理 | Ramsey 定理内容概要 )
【组合数学】组合存在性定理 ( 三个组合存在性定理 | 有限偏序集分解定理 | Ramsey 定理 | 相异代表系存在定理 | Ramsey 定理内容概要 )
164 0
粗略估计哥德巴赫猜想的成立(伯特兰-切比雪夫定理、质数密度定理)
粗略估计哥德巴赫猜想的成立(伯特兰-切比雪夫定理、质数密度定理)
176 0