条件变分自动编码器CVAE:基本原理简介和keras实现

简介: 条件变分自动编码器CVAE:基本原理简介和keras实现

变分自动编码器(VAE)是一种有方向的图形生成模型,已经取得了很好的效果,是目前生成模型的最先进方法之一。它假设数据是由一些随机过程,涉及一个未被注意的连续随机变量z假设生成的z是先验分布Pθ(z)和条件生成数据分布Pθ(X | z),其中X表示这些数据。z有时被称为数据X的隐藏表示。

 

像任何其他自动编码器架构一样,它有一个编码器和一个解码器。编码器部分试图学习qφ(z | x),相当于学习数据的隐藏表示x或者x编码到隐藏的(概率编码器)表示。解码器部分试图学习Pθ(X | z)解码隐藏表示输入空间。图形化模型可以表示为下图。


 

image.png

对模型进行训练,使目标函数最小化


 

image.png

这种损失的第一项是重建错误或数据点的预期负对数可能性。期望是关于编码器的分布在表示通过采取一些样本。这个术语鼓励解码器在使用来自潜在分布的样本时学会重构数据。较大的错误表示解码器无法重构数据。

第二项是Kullback-Leibler编码器之间的分布q_φ(z | x)p (z)。这个散度度量了在使用q表示z上的先验时损失了多少信息,并鼓励其值为高斯分布。

在生成过程中,来自N(0,1)的样本被简单地输入解码器。训练和生成过程可以表示为以下


 

image.png

一种训练时变分自编码器实现为前馈神经网络,其中P(X|z)为高斯分布。红色表示不可微的采样操作。蓝色表示损失计算

image.png

测试时变分的自动编码器,它允许我们生成新的样本。编码器路径被简单地丢弃。

VAE进行如此简要的描述,其原因在于,VAE并不是本文的主要关注对象,而是与本文的主要主题紧密相关的。

VAE生成数据的一个问题是,我们对生成的数据类型没有任何控制。例如,如果我们用MNIST数据集训练VAE,并尝试通过向解码器输入Z ~ N(0,1)来生成图像,它也会产生不同的随机数字。如果我们训练好,图像会很好,但我们将无法控制它会产生什么数字。例如,你不能告诉VAE生成一个数字“2”的图像。

为此,我们需要对VAE的体系结构进行一些修改。假设给定一个输入Y(图像的标签),我们希望生成模型生成输出X(图像)。所以,VAE的过程将被修改为以下:鉴于观察y, z是来自先验分布Pθ(z | y)和输出分布Pθ产生的x (x | y,z)。请注意,对于简单的VAE,之前是Pθ(z)和输出是由Pθ(x | z)

image.png

 

VAE中的可视化表示任务

这里编码器部分试图学习qφ(z | x, y),相当于学习隐藏的代表数据或编码xy条件。解码器部分试图隐藏表示学习Pθ(x | z, y)解码隐藏表示输入空间条件的y图形化模型可以表示为如下图所示。

image.png

 

条件VAE (Conditional VAE)的神经网络结构可以表示为如下图。

image.png

X是像。Y是图像的标签,它可以用一个离散向量表示。

目录
相关文章
|
7月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
910 4
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
131 10
|
5月前
|
资源调度 PyTorch 调度
多任务高斯过程数学原理和Pytorch实现示例
本文探讨了如何使用高斯过程扩展到多任务场景,强调了多任务高斯过程(MTGP)在处理相关输出时的优势。通过独立多任务GP、内在模型(ICM)和线性模型(LMC)的核心区域化方法,MTGP能够捕捉任务间的依赖关系,提高泛化能力。ICM和LMC通过引入核心区域化矩阵来学习任务间的共享结构。在PyTorch中,使用GPyTorch库展示了如何实现ICM模型,包括噪声建模和训练过程。实验比较了MTGP与独立GP,显示了MTGP在预测性能上的提升。
105 7
|
7月前
|
机器学习/深度学习 自然语言处理 算法
长序列中Transformers的高级注意力机制总结
Transformers在处理长序列时面临注意力分散和噪音问题,随着序列增长,注意力得分被稀释,影响相关上下文表示。文章探讨了序列长度如何影响注意力机制,并提出了多种解决方案:局部敏感哈希减少计算需求,低秩注意力通过矩阵分解简化计算,分段注意力将输入分割处理,层次化注意力逐级应用注意力,递归记忆增强上下文保持,带有路由的注意力机制动态调整信息流,以及相对位置编码改进序列理解。这些方法旨在提高Transformer在长序列任务中的效率和性能。
340 3
|
7月前
|
机器学习/深度学习 自然语言处理 运维
大模型开发:解释自编码器以及它们在表示学习中的作用。
自编码器是一种神经网络,用于无监督学习中的数据降维和压缩,由编码器和解码器组成,学习低维稀疏表示。它们分为收缩、正则和变分类型,常用于图像重构、聚类、机器翻译等任务,能生成类似训练数据的新样本。自编码器在特征学习和多种任务中展现强大能力。
145 7
|
7月前
|
机器学习/深度学习 语音技术 网络架构
【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享
【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Reduction归约和自动微分操作讲解及实战(附源码 超详细必看)
PyTorch深度学习基础之Reduction归约和自动微分操作讲解及实战(附源码 超详细必看)
135 0
|
机器学习/深度学习 Python
【Python机器学习】实验16 卷积、下采样、经典卷积网络
【Python机器学习】实验16 卷积、下采样、经典卷积网络
85 0
|
机器学习/深度学习 算法 Python
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
268 0
|
机器学习/深度学习 数据可视化 PyTorch
【Pytorch神经网络实战案例】14 构建条件变分自编码神经网络模型生成可控Fashon-MNST模拟数据
变分自编码神经网络在变分自编码神经网络基础之上,增加指导性条件。在编码阶段的输入端添加了与标签对应的特征,在解码阶段同样添加标签特征。这样,最终得到的模型将会把输入的标签特征当成原始数据的一部分,实现通过标签来生成可控模拟数据的效果。
123 0