【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享

简介: 【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享

长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。



视频:LSTM神经网络架构和工作原理及其在Python中的预测应用


么是依赖关系?

假设您在观看视频时记得前一个场景,或者在阅读一本书时您知道前一章发生了什么。

传统的神经网络无法做到这一点,这是一个主要缺点。例如,假设您想对电影中每一点发生的事件进行分类。目前尚不清楚传统的神经网络如何利用电影中先前事件来推理后来的事件。

递归神经网络解决了这个问题。它们是带有循环的网络,允许信息持续存在。循环神经网络有循环。

在上图中,一大块神经网络,查看一些输入x并输出一个值h. 循环允许信息从网络的一个步骤传递到下一个步骤。


这些循环使循环神经网络看起来有点神秘。然而,如果你想得更多,就会发现它们与普通的神经网络并没有什么不同。循环神经网络可以被认为是同一网络的多个副本,每个副本都将消息传递给后继者。考虑一下如果我们展开循环会发生什么:

这种链状性质表明循环神经网络与序列和列表密切相关。它们是用于此类数据的神经网络的自然架构。在过去的几年里,将 RNN 应用于各种问题取得了令人难以置信的成功:语音识别、语言建模、翻译、图像字幕……不胜枚举。这些成功的关键是使用“LSTM”,这是一种非常特殊的循环神经网络,几乎所有基于循环神经网络的令人兴奋的结果都是用它们实现的。本文将探讨的正是这些 LSTM。


长期依赖问题

下面是一个关于如何使用循环神经网络(RNN)来拟合语言模型的例子。

RNN 的吸引力之一是它们可能能够将先前的信息与当前任务联系起来,例如使用先前的视频帧可能会告知对当前帧的理解。如果 RNN 可以做到这一点,它们将非常有用。但他们可以吗?

有时,我们只需要查看最近的信息即可执行当前任务。例如,考虑一个语言模型试图根据之前的单词预测下一个单词。如果我们试图预测“云在天空”中的最后一个词,我们不需要任何进一步的上下文——很明显下一个词将是天空。在这种情况下,相关信息与所需位置之间的差距很小,RNN 可以学习使用过去的信息。


但也有我们需要更多上下文的情况。考虑尝试预测文本“我在中国长大……我说地道的中文”中的最后一个词。最近的信息表明,下一个词可能是一种语言的名称,但如果我们想缩小哪种语言的范围,我们需要中国的上下文,从更远的地方。相关信息和需要的点之间的差距完全有可能变得非常大。


随着差距的扩大,RNN 变得无法学习连接信息。


LSTM 网络

长短期记忆网络——通常称为“LSTM”——是一种特殊的 RNN,能够学习长期依赖关系。它们在解决各种各样的问题时表现出色,现在被广泛使用。LSTM 被明确设计为避免长期依赖问题。长时间记住信息实际上是他们的默认行为,而不是他们难以学习的东西!

所有循环神经网络都具有神经网络的重复模块链的形式。在标准 RNN 中,此重复模块将具有非常简单的结构,例如单个 tanh 层。


LSTM 也有这种链状结构,但重复模块有不同的结构。不是只有一个神经网络层,而是三个部分组成,以一种非常特殊的方式进行交互。

LSTM 的工作方式非常类似于 RNN 单元。这是 LSTM 网络的内部功能。LSTM 由三个部分组成,如图所示,每个部分执行一个单独的功能。第一部分选择来自前一个时间戳的信息是被记住还是不相关并且可以被遗忘。在第二部分中,单元尝试从该单元的输入中学习新信息。最后,在第三部分,单元将更新的信息从当前时间戳传递到下一个时间戳。LSTM 单元的这三个部分称为门。第一部分称为忘记门或遗忘门,第二部分称为输入门,最后一部分称为输出门。



Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析


每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。

下面是某地区2020年11月降雨量数据查看文末了解数据获取方式的图解。

作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。

使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。

>>> sm.stats.acorr_ljungbox(res.resid, lags=

10

10)

Ljung-Box检验

Dickey-Fuller 检验

数据操作和模型配置

该数据集由722个月的降雨量数据组成。

选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。

下面是数据集的一个片段。

然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。

# 形成数据集矩阵
    for i in range(len(df)-previous-1):
        a = df\[i:(i+previous), 0\]
        dataX.append(a)
        dataY.append(df\[i + previous, 0\])

然后用MinMaxScaler对数据进行标准化处理。

将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。

前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。

# 训练和验证数据的划分
train_size = int(len(df) * 0.8)
val\_size = len(df) - train\_size
train, val = df\[0:train\_size,:\], df\[train\_size:len(df),:\]# 前期的数量
previous = 120

然后,输入被转换为样本、时间步骤、特征的格式。

# 转换输入为样本、时间步骤、特征样本、时间步骤、特征
样本、时间步骤、特征。
np.reshape(X_train, (shape\[0\], 1, shape\[1\]))

模型训练和预测

该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。

# 生成LSTM网络
model = tf.keras.Sequential()
# 列出历史中的所有数据
print(history.history.keys())
# 总结准确度变化
plt.plot(history.history\['loss'\])

下面是训练集与验证集的模型损失的关系图。

预测与实际降雨量的关系图也被生成。

相关文章
|
2月前
|
SQL 分布式计算 Serverless
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
285 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
|
24天前
|
人工智能 监控 安全
NTP网络子钟的技术架构与行业应用解析
在数字化与智能化时代,时间同步精度至关重要。西安同步电子科技有限公司专注时间频率领域,以“同步天下”品牌提供可靠解决方案。其明星产品SYN6109型NTP网络子钟基于网络时间协议,实现高精度时间同步,广泛应用于考场、医院、智慧场景等领域。公司坚持技术创新,产品通过权威认证,未来将结合5G、物联网等技术推动行业进步,引领精准时间管理新时代。
|
2月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
119 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
2月前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
130 0
中国联通网络资源湖仓一体应用实践
|
1月前
|
监控 应用服务中间件 Linux
掌握并发模型:深度揭露网络IO复用并发模型的原理。
总结,网络 I/O 复用并发模型通过实现非阻塞 I/O、引入 I/O 复用技术如 select、poll 和 epoll,以及采用 Reactor 模式等技巧,为多任务并发提供了有效的解决方案。这样的模型有效提高了系统资源利用率,以及保证了并发任务的高效执行。在现实中,这种模型在许多网络应用程序和分布式系统中都取得了很好的应用成果。
79 35
|
24天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
64 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
16天前
|
人工智能 安全 网络安全
网络安全厂商F5推出AI Gateway,化解大模型应用风险
网络安全厂商F5推出AI Gateway,化解大模型应用风险
29 0
|
2月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
78 14
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
163 17
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
124 10