10分钟入门Matplotlib: 数据可视化介绍&使用教程(一)

简介: 10分钟入门Matplotlib: 数据可视化介绍&使用教程(一)

Matplotlib介绍

数据可视化是数据科学家需要掌握的必备技能之一。使用可视化技术可以理解和解决大多数业务问题。可视化主要包括探索性数据分析(EDA)和图形绘制。有效的可视化有助于用户了解数据中的模式,并有效地解决业务问题。可视化的另一个优点是能将复杂数据简化为易于理解的形式。

人们总是觉得图像比文本更容易理解,因此可视化是分析和解释数据的最佳手段,它能帮助用户轻松地理解大量的信息。数据可视化也有助于人们理解趋势、相关性、模式、分布等信息。

在数据可视化领域的众多工具和技术中,python是最常用的。Python为数据可视化提供了多个库,其中最常用的有:

  • Matplotlib
  • Seaborn
  • Pandas visualisation
  • Plotly

本文档将有助于你了解在业界被广泛使用的matplotlib库。Matplotlib具有丰富的图形功能,而且容易上手。本文主要介绍不同的图形功能,包括一些语法等。

Matplotlib的安装

matplotlib库有多种安装方法。最简单的安装matplotlib的方式是下载Anaconda包。因为Anaconda会默认安装Matplotlib,不需要你进行任何额外的步骤。

从anaconda的官方网站下载anaconda软件包

为了安装matplotlib,打开anaconda提示符并运行以下命令


pip install matplotlib

or

conda install matplotlib


在Jupyter notebook中运行以下命令以验证matplotlib是否正确安装


import matplotlibmatplotlib.__version__


image.png

请输入图片描述


如何使用Matplotlib

在使用matplotlib之前,我们需要在Jupyter notebook中使用‘import’方法来导入这个包。PyPlot是matplotlib中最常用的数据可视化模块,通常使用PyPlot就足以满足可视化的需求。

# import matplotlib library as mplimport matplotlib as mpl#import the pyplot module from matplotlib as plt (short name used for referring the object)import matplotlib.pyplot as plt


image.png

请输入图片描述


Matplotlib、Pyplot和Python之间的关系


Python是一种非常流行的编程语言,可以用于web开发、数学和统计分析。Python可以在大多数平台上工作,而且使用起来也很简单。


Python有很多库可以调用,用于可视化和数据分析的库主要以下几种。


NumPy


Pandas


Matplotlib


Seaborn


Plotly


SciKit-Learn


正如您所看到的,这里面包括matplotlib,它是使用python开发的。这个库被广泛用于数据可视化。


PyPlot是matplotlib中的一个模块,它提供类似于MATLAB的交互体验。MATLAB被广泛用于工业界中的统计分析。但MATLAB是一种需要许可的软件,且价格不菲。而PyPlot是一个开源模块,为python用户提供类似MATLAB的功能。总之,PyPlot在开源环境中被视为MATLAB的替代品。


绘制一个简单的图像

在这里,我们将使用NumPy生成的随机数来绘制一个简单的图像。创建图像最简单的方法是使用' plot() '方法。为了生成一个图像,我们需要两个坐标轴(X)和(Y),因此我们使用Numpy中的' linspace() '方法生成两个随机数列。

# import the NumPy package
import numpy as np
# generate random number using NumPy, generate two sets of random numbers and store in x, y
x = np.linspace(0,50,100)
y = x * np.linspace(100,150,100)
# Create a basic plot
plt.plot(x,y)


image.png

请输入图片描述


生成的图像如下图所示:


image.png

请输入图片描述


为图像添加更多元素

上面生成的图还缺少一些东西,让我们试着为它添加不同的元素,以便更好地解释这个图。可以为其添加的元素包括title、x-Label、y-label、x-limits、y-limits。

# set different elements to the plot generated above
# Add title using ‘plt.title’
# Add x-label using ‘plt.xlabel’
# Add y-label using ‘plt.ylabel’
# set x-axis limits using ‘plt.xlim’
# set y-axis limits using ‘plt.ylim’
# Add legend using ‘plt.legend’

image.png

请输入图片描述


image.png

请输入图片描述


# add color, style, width to line element
plt.plot(x, y, c = 'r', linestyle = '--', linewidth=2)

image.png

请输入图片描述


# add markers to the plot, marker has different elements i.e., style, color, size etc.,
plt.plot (x, y, marker='*', markersize=3, c=’g’)

image.png

请输入图片描述

# add grid using grid() method
Plt.grid(True)
# add legend and label
plt.legend()


image.png


请输入图片描述


图像自定义:


色彩


b –蓝色


c –青色


g –绿色


k –黑色


m –洋红色


r –红色


w –白色


y –黄色


可以使用十六进制或RGB格式


线型


'-' :实线


'--':虚线


'-。':点划线


':'–虚线


标记样式


。–点标记


,–像素标记


v –三角形向下标记


^ –三角形向上标记


<–三角形左标记


>–三角形右标记


1 –三脚架下降标记


2 –三脚架向上标记


3 –三脚架左标记


4 –三脚架右标记


s –方形标记


p –五边形标记


–星形标记


其他配置属性


color or c


linestyle


linewidth


marker


markeredgewidth


markeredgecolor


markerfacecolor


markersize

目录
相关文章
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
40 1
|
16天前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
47 9
|
2月前
|
机器学习/深度学习 计算机视觉 Python
Matplotlib 教程
Matplotlib 教程
27 1
|
2月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
3月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
41 3
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
26 1
|
3月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
32 3
|
3月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
23 1
|
3月前
|
Python
Matplotlib 教程 之 Matplotlib imsave() 方法 2
Matplotlib 教程 之 Matplotlib imsave() 方法 2
37 1
|
3月前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
41 0