python机器学习入门之numpy的用法(超详细,必看)

简介: python机器学习入门之numpy的用法(超详细,必看)

numpy强大的功能主要基于底层的一个ndarray结构 其可以生成N维数组


当然首先你要导入numpy这个科学计算库 如果不知道怎么导入可以看我这篇博客


python导入和下载库


1:ndarray对象是一系列同类型数据的集合,下标索引从0开始


numpy.array(object,dtype=None,copy=true,order=None,subok=False,ndmin=0)
import numpy as np
a=np.array([1,2,3])#一维
print(a)
b=np.array([[1,2],[3,4]])二维
print(b)
ndmin参数用于设置数据最小维度
dtype参数用于设置数组类型

2:astype函数用于修改数据类型

y=y.astype("float32")

3:轴(axis)


每个线性数组称为一个轴 轴即数组的维度 axis=0即对每列进行操作 axis=1即对每行进行操作


秩(rank)数组的维数

import numpy as np
arr=np.array([[0,1,2],[3,4,5]])
print(arr)
print(arr.sum(axis=0))
print(arr.sum(axis=1))

4:其他创建数组的方式


4.1:empty函数


能创建一个指定形状、数据类型的空数组 其没有经过初始化 其内容不确定


import numpy as np
x=np.empty([3,2],dtype=int)
print(x)

4.2:zeros创建全0的数组


import numpy as np
x=np.zeros([3,2],dtype=int)
print(x)

4.3: ones创建全1的函数

import numpy as np
x=np.ones([3,2],dtype=int)
print(x)

4.4:range/arange函数


用法为指定开始和结束还是步长值来决定数列range(start,stop,step)


import numpy as np
w=np.arange(0,8,0.5)
print(w)

4.5:linspace函数(start,stop,num)


在一定区间内生成指定数量的样本数


import numpy as np
v=np.linspace(1,6,20)
print(v)

5:random随机函数


import numpy as np
x=np.random.rand(2,3)#生成两行三列的随机浮点数组
y=np.random.randint(0,10,(2,2))

6:切片


是指取数据序列对象一部分的操作


import numpy as np
arr=np.arange(24).reshape(4,6)
print(arr)
arr1=arr[1:,:3]#切片
print(arr1)

7:迭代


可以通过for循环进行迭代 多维则for循环嵌套迭代


import numpu as np
a=np.arange(0,60,5)
a=a.reshape(3,4)
for xline in a:
  for yitem in xline:
      print(yitem,end=' ')

8:numpy计算


8.1:条件计算 即通过条件来筛选值


import numpy as np
score=np.array([[80,88],[82,81],[84,75],[86,86]])
result==[score>80]
print(result)

还可以通过where函数实现操作  格式如下


where(condition,x if true,y if false) 有点类似与C++里面的三目运算符


import numpy as np
num=np.random.normal(0,1,(3,4))
print(num)
num[num<0.5]=0
print(num)
print(np.where(num>0.5,1,0))

9:统计计算


常见的min ,max ,mean ,sum ,std 函数等等 懂英文的基本上都知道啥意思 无需赘叙


相关文章
|
26天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
14天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
19天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
6天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
31 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
15天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
15天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
35 7
|
16天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
34 5
|
15天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
42 3
|
19天前
|
Python
Python编程入门:从零开始的代码旅程
本文是一篇针对Python编程初学者的入门指南,将介绍Python的基本语法、数据类型、控制结构以及函数等概念。文章旨在帮助读者快速掌握Python编程的基础知识,并能够编写简单的Python程序。通过本文的学习,读者将能够理解Python代码的基本结构和逻辑,为进一步深入学习打下坚实的基础。
|
22天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。