暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
本文提出了一种名为混合头注意力(MoH)的新架构,旨在提高Transformer模型中注意力机制的效率。MoH通过动态注意力头路由机制,使每个token能够自适应选择合适的注意力头,从而在减少激活头数量的同时保持或提升模型性能。实验结果显示,MoH在图像分类、类条件图像生成和大语言模型等多个任务中均表现出色,尤其在减少计算资源消耗方面有显著优势。
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
在实际应用中,从复杂概率密度函数(PDF)中抽取随机样本的需求非常普遍,涉及统计估计、蒙特卡洛模拟和物理仿真等领域。`lintsampler` 是一个纯 Python 库,旨在高效地从任意概率分布中生成随机样本。它通过线性插值采样算法,简化了复杂分布的采样过程,提供了比传统方法如 MCMC 和拒绝采样更简便和高效的解决方案。`lintsampler` 的设计目标是让用户能够轻松生成高质量的样本,而无需复杂的参数调整。
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
在数据分析和机器学习中,从原始数据中提取有价值的信息至关重要。本文详细介绍了十种基础特征工程技术,包括数据插补、数据分箱、对数变换、数据缩放、One-Hot编码、目标编码、主成分分析(PCA)、特征聚合、TF-IDF 和文本嵌入。每种技术都有具体应用场景和实现示例,帮助读者更好地理解和应用这些方法。通过合理的特征工程,可以显著提升模型的性能和预测能力。
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
本文探讨了图像分割与边缘检测之间的关系,并通过实验评估了多种边缘检测指标的有效性。研究发现,常用的RMSE、PSNR和SSIM指标在海岸线检测任务中可能高估性能,而FOM(优点图)指标则能更准确地选择最佳边缘检测参数。实验结果表明,FOM在92.6%的情况下选择了更好的阈值,在66.3%的情况下选择了最佳阈值。此外,FOM通过考虑预测边缘与真实边缘之间的距离,提供了更合理的评估标准。本文不仅对海岸线检测有重要意义,还对医学图像分析、计算机视觉和遥感等多个领域具有广泛的应用价值。作者通过理论分析和实证研究,证明了FOM在边缘检测评估中的优越性。
稀疏促进动态模态分解(SPDMD)结合了动态模态分解(DMD)的数学优雅性和稀疏优化技术,有效提取高维数据中的关键特征。SPDMD通过稀疏约束自动筛选出最重要模态,去除冗余信息,提升模型的可解释性和计算效率。该方法在流体动力学、图像处理、时间序列分析及金融数据等领域广泛应用,能够识别主要趋势、周期性模式及异常现象。SPDMD不仅提高了数据分析效率,还为各领域研究提供了强有力的工具。通过自动选择最相关的模态,SPDMD尤其适用于大规模数据集和实时应用。
本文探讨了贝叶斯方法在线性回归中的应用,从不确定性角度出发,介绍了如何通过概率来表达变量间关系的不确定性。文章首先回顾了古希腊天文学家使用本轮系统模拟行星运动的历史,并将其与傅里叶级数分解方法类比,强调了近似的重要性。接着,通过高斯分布和贝叶斯推断,详细讲解了线性回归中的不确定性处理方法。文章使用Howell1数据集,展示了如何构建和拟合高斯模型,并通过先验预测模拟验证模型合理性。最后,介绍了多项式回归和样条方法,展示了如何逐步增加模型复杂性以捕捉更细微的数据模式。贝叶斯方法不仅提供了点估计,还提供了完整的后验分布,使得模型更具解释性和鲁棒性。
在深度学习和计算机视觉领域,数据增强是提升模型性能和泛化能力的关键技术。本文全面介绍了10个广泛使用的图像数据增强库,分析其特点和适用场景,帮助研究人员和开发者选择最适合需求的工具。这些库包括高性能的GPU加速解决方案(如Nvidia DALI)、灵活多功能的Albumentations和Imgaug,以及专注于特定框架的Kornia和Torchvision Transforms。通过详细比较各库的功能、特点和适用场景,本文为不同需求的用户提供丰富的选择,助力深度学习项目取得更好的效果。选择合适的数据增强库需考虑性能需求、任务类型、框架兼容性及易用性等因素。
FredNormer是一种创新的频域正则化方法,旨在提高时间序列预测模型处理非平稳数据的能力。现有正则化技术虽在分布偏移上有所成效,但在频域动态模式捕捉方面存在不足。FredNormer通过自适应增强关键频率分量的权重,解决了这一问题,并设计了即插即用模块,便于集成到各类预测模型中。实验表明,FredNormer在多个公共数据集上显著提升了预测精度,特别是在复杂频率特征的数据集上效果显著。此外,其计算效率也优于现有方法。该方法为非平稳时间序列预测提供了有力工具。
在当前数据驱动的商业环境中,人工智能(AI)和机器学习(ML)已成为各行业决策的关键工具,但随之而来的是“黑盒”问题:模型内部机制难以理解,引发信任缺失、监管合规难题及伦理考量。LIME(局部可解释模型无关解释)应运而生,通过解析复杂模型的个别预测,提供清晰、可解释的结果。LIME由华盛顿大学的研究者于2016年提出,旨在解决AI模型的透明度问题。它具有模型无关性、直观解释和局部保真度等优点,在金融、医疗等领域广泛应用。LIME不仅帮助企业提升决策透明度,还促进了模型优化和监管合规,是实现可解释AI的重要工具。
在大数据时代,有效的信息检索技术对于从海量数据中提取相关信息至关重要。国立台湾大学的研究者提出了一种名为PAIRDISTILL的新方法,通过成对相关性蒸馏,利用成对重排序器提供的细粒度训练信号,显著提升了密集检索模型的性能。该方法不仅在MS MARCO等基准测试中表现出色,还在领域外和零样本场景中展现出强大的泛化能力,为密集检索领域提供了新的研究方向。
DGLM(Diffusion Guided Language Modeling)是一种新型框架,结合了自回归模型的流畅性和扩散模型的灵活性,解决了现有引导生成方法的局限性。DGLM通过扩散网络生成语义提案,并使用轻量级提示生成器将嵌入转化为软提示,引导自回归解码器生成文本。该方法无需微调模型权重,易于控制新属性,并在多个基准数据集上表现出色。实验结果显示,DGLM在毒性缓解、情感控制和组合控制等方面优于现有方法,为可控文本生成提供了新的方向。
谷歌研究人员提出了一种名为自我纠错强化学习(SCoRe)的新方法,旨在使大型语言模型(LLMs)能够在无需外部反馈的情况下即时纠正自己的错误。SCoRe通过在线多轮强化学习训练模型,解决了传统自我纠错方法的局限性。实验结果显示,SCoRe在数学问题求解和代码生成任务上显著提升了模型的自我纠错能力,相较于基准模型和其他方法表现出色。此外,SCoRe还可与其他推理优化技术结合,进一步提升模型性能。尽管存在迭代次数限制和计算成本等局限性,SCoRe为未来研究提供了新的方向,有望推动AI系统的自主性和适应性发展。
构建预训练时间序列模型的主要挑战在于获取高质量、多样化的时间序列数据。目前有两种方法:迁移学习LLM(如GPT-4或Llama)和从零训练。尽管迁移学习可行,但效果有限;从零训练则依赖大量数据,如MOIRAI、TimesFM和TTM等模型所示。为解决这一难题,研究人员提出利用图像数据进行时间序列预测。
本文探讨了自然语言处理中嵌入技术的应用,重点在于语义搜索及聚类方法。通过对比不同规模的开源与闭源模型,文章展示了如何利用聚类技术过滤无关结果,提高搜索精度。实验结果显示,较小模型如mxbai在某些任务上表现优异,提示我们在追求高性能的同时不应忽视计算效率与成本效益。最后,文章还介绍了重新排序技术,进一步优化检索结果的相关性。
在人工智能迅速发展的背景下,有效利用大型语言模型(LLMs)成为重要议题。9月发布的这篇论文提出了LangGPT结构化提示框架和Minstrel多代理提示生成系统,旨在帮助非AI专家更好地使用LLMs。LangGPT通过模块化设计提高提示的泛化能力和可重用性,Minstrel则通过多代理协作自动生成高质量提示。实验结果显示,这两种方法显著提升了LLMs的性能,特别是在大规模模型上效果显著。
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
TimeMOE是一种新型的时间序列预测基础模型,通过稀疏混合专家(MOE)设计,在提高模型能力的同时降低了计算成本。它可以在多种时间尺度上进行预测,并且经过大规模预训练,具备出色的泛化能力。TimeMOE不仅在准确性上超越了现有模型,还在计算效率和灵活性方面表现出色,适用于各种预测任务。该模型已扩展至数十亿参数,展现了时间序列领域的缩放定律。研究结果显示,TimeMOE在多个基准测试中显著优于其他模型,特别是在零样本学习场景下。
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
MAGICORE是一种多代理迭代框架,旨在改进大语言模型(LLM)的推理能力。该框架通过将问题分类为简单或困难,并分别为其应用粗粒度聚合或细粒度精炼,有效避免了过度精炼、错误定位及精炼不足等问题。MAGICORE包含Solver、Reviewer和Refiner三个角色,结合结果和过程奖励模型,实现有针对性的反馈和迭代精炼。实验结果显示,MAGICORE在多个数据集和模型上显著优于现有的聚合和精炼方法,提升了推理准确性和样本效率。
本文将详细介绍如何通过扩展PyTorch的 ``` LRScheduler ``` 类来实现一个具有预热阶段的余弦衰减调度器。我们将分五个关键步骤来完成这个过程。
9月发布的一篇论文中,Pagliardini等人提出了AdEMAMix,一种新的优化算法,旨在克服Adam及其变体(如AdamW)在利用长期梯度信息方面的局限性。通过结合两种不同衰减率的指数移动平均(EMA),AdEMAMix能够更有效地利用历史梯度信息。实验结果显示,AdEMAMix在语言建模和视觉任务中均显著优于AdamW,不仅能加速模型收敛,还能提高学习稳定性。尽管引入了额外计算步骤,但开销极小,展示了在大规模神经网络训练中的潜力。论文详细探讨了其核心思想、实验设置及未来研究方向。
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
Polars 最新开发了 GPU 加速执行引擎,支持对超过 100GB 的数据进行交互式操作。本文详细介绍了 Polars 中 DataFrame(DF)的概念及其操作,包括筛选、数学运算和聚合函数等。Polars 提供了“急切”和“惰性”两种执行模式,后者通过延迟计算实现性能优化。启用 GPU 加速后,只需指定 GPU 作为执行引擎即可大幅提升处理速度。实验表明,GPU 加速比 CPU 上的懒惰执行快 74.78%,比急切执行快 77.38%。Polars 的查询优化器智能管理 CPU 和 GPU 之间的数据传输,简化了 GPU 数据处理。这一技术为大规模数据集处理带来了显著的性能提升。
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
在当前大语言模型(LLM)应用开发中,评估模型输出的准确性成为关键问题。本文介绍了一个基于双代理的RAG(检索增强生成)评估系统,使用生成代理和反馈代理对输出进行评估。文中详细描述了系统的构建过程,并展示了基于四种提示工程技术(ReAct、思维链、自一致性和角色提示)的不同结果。实验结果显示,ReAct和思维链技术表现相似,自一致性技术则呈现相反结果,角色提示技术最为不稳定。研究强调了多角度评估的重要性,并提供了系统实现的详细代码。
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
这是8月份再arxiv上发布的新论文,我们下面一起来介绍这篇论文的重要贡献
本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
本文介绍了一种名为MemLong的创新长文本处理方法,该方法通过整合外部检索器显著增强了大型语言模型处理长上下文的能力。MemLong采用轻量级设计,利用不可训练的外部记忆库存储历史上下文和知识,并通过检索相关的块级键值对增强模型输入。其技术优势包括分布一致性、高效训练策略及扩展的上下文窗口,能够在单个GPU上处理长达80k个token的文本,同时保持计算效率和内存控制。实验结果显示,MemLong在多个长文本基准数据集上表现出色,显著提升了语言建模能力和上下文学习效果。
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
在分类问题中,调整决策的概率阈值虽常被忽视,却是提升模型质量的有效步骤。本文深入探讨了阈值调整机制,尤其关注多类分类问题,并介绍了一个名为 ClassificationThresholdTuner 的开源工具,该工具自动化阈值调整和解释过程。通过可视化功能,数据科学家可以更好地理解最优阈值及其影响,尤其是在平衡假阳性和假阴性时。此外,工具支持多类分类,解决了传统方法中的不足。
大型语言模型(LLMs)在生成式AI领域备受关注,但其知识局限性和幻觉问题仍具挑战。检索增强生成(RAG)通过引入外部知识和上下文,有效解决了这些问题,并成为2024年最具影响力的AI技术之一。RAG评估需超越简单的实现方式,建立有效的性能度量标准。本文重点讨论了七个核心检索指标,包括准确率、精确率、召回率、F1分数、平均倒数排名(MRR)、平均精确率均值(MAP)和归一化折损累积增益(nDCG),为评估和优化RAG系统提供了重要依据。这些指标不仅在RAG中发挥作用,还广泛应用于搜索引擎、电子商务、推荐系统等领域。
本文继续深入探讨蒙特卡罗 (MC)方法。这些方法的特点是能够仅从经验中学习,不需要任何环境模型,这与动态规划(DP)方法形成对比。
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
本文详细介绍了如何利用NetworkX库从图结构中提取重要特征。首先,通过定义辅助函数设置了图的可视化选项,并以Zachary网络数据集为例进行了可视化展示。接着,文章深入探讨了三类图特征:基于节点的特征(如节点度、中心性等)、基于边的特征(如最短路径、邻域重叠等)以及基于图的特征(如Graphlets、Weisfeiler-Leman特征等)。通过这些特征的提取与分析,可以全面理解网络结构,识别关键节点,分析信息流动模式,并发现潜在的隐藏模式。本文不仅展示了如何应用这些特征来揭示社交网络中的角色和联系,还强调了其在交通网络分析和生物系统研究等领域的广泛应用潜力。
Optuna,广受欢迎的超参数优化框架,近日发布了其第四个主要版本。自2018年问世以来,Optuna迅速成为机器学习领域的关键工具,目前拥有10,000+ GitHub星标、每月300万+下载量、16,000+代码库使用、5,000+论文引用及18,000+ Kaggle使用。Optuna 4.0引入了OptunaHub平台,支持功能共享;正式推出Artifact Store管理生成文件;稳定支持NFS的JournalStorage实现分布式优化;显著加速多目标TPESampler,并引入新Terminator算法。
本文详细解析了大语言模型(LLM)的采样策略及其关键参数,如温度和top_p。LLM基于输入提示生成下一个标记的概率分布,通过采样策略选择标记并附回输入,形成循环。文章介绍了对数概率(logprobs)、贪婪解码、温度参数调整、top-k与top-p采样等概念,并探讨了min-p采样这一新方法。通过调整这些参数,可以优化LLM输出的质量和创造性。最后,文章提供了实验性尝试的建议,帮助读者在特定任务中找到最佳参数配置。本文使用VLLM作为推理引擎,展示了Phi-3.5-mini-instruct模型的应用实例。
本文将详细指导如何从零开始构建完整的Llama 3模型架构,并在自定义数据集上执行训练和推理。
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
发表了文章
2025-11-08
发表了文章
2025-11-07
发表了文章
2025-11-06
发表了文章
2025-11-05
发表了文章
2025-11-04
发表了文章
2025-11-03
发表了文章
2025-11-02
发表了文章
2025-11-01
发表了文章
2025-10-31
发表了文章
2025-10-30
发表了文章
2025-10-29
发表了文章
2025-10-28
发表了文章
2025-10-27
发表了文章
2025-10-26
发表了文章
2025-10-25
发表了文章
2025-10-24
发表了文章
2025-10-23
发表了文章
2025-10-22
发表了文章
2025-10-21
发表了文章
2025-10-20