暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
十个经过实战检验的 vLLM KV-cache 优化方法 —— 量化、分块预填充、前缀重用、滑动窗口、ROPE 缩放、后端选择等等 —— 提升 tokens/sec。
Tunix是Google推出的基于JAX的LLM后训练库,支持微调、强化学习与知识蒸馏,集成Flax NNX,主打TPU优化与模块化设计,支持QLoRA等高效训练方法,适用于高性能分布式训练场景。
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
AI能否从错误中学习?Reflection与Reflexion Agent通过生成-反思-改进循环,实现自我优化。前者侧重内容精炼,后者结合外部研究提升准确性,二者分别适用于创意优化与知识密集型任务。
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
本文系统解析了17种AI智能体设计模式,涵盖反思、工具调用、多智能体协作、思维树、规划执行、集成决策等核心架构,结合LangGraph实现与代码演示,揭示如何通过模式组合构建高效、可靠的大规模AI系统。
掩码注意力是生成模型的核心,通过上三角掩码限制模型仅关注当前及之前token,确保自回归因果性。相比BERT的双向注意力,它实现单向生成,是GPT等模型逐词预测的关键机制,核心仅需一步`masked_fill_`操作。
注意力机制可理解为一种“软k-NN”:查询向量通过缩放点积计算与各键的相似度,softmax归一化为权重,对值向量加权平均。1/√d缩放防止高维饱和,掩码控制信息流动(如因果、填充)。不同相似度函数(点积、余弦、RBF)对应不同归纳偏置,多头则在多个子空间并行该过程。
Optuna v4.5发布,新增GPSampler对约束多目标优化的支持,结合高斯过程与log EHVI获取函数,显著提升在材料科学、机器学习等领域的黑盒优化效率,减少无效评估,加速收敛。
嵌入是RAG系统的核心,直接影响检索质量。本文详解嵌入原理,解析稠密/稀疏、长上下文、多向量等类型,梳理选型关键:领域匹配、上下文长度、维度与成本,并结合MTEB基准给出实用建议,助你为业务挑选高效稳健的嵌入方案。
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
面对真实数据不知该用哪种分布?本文精炼总结8个实战必备概率分布,涵盖使用场景、避坑指南与代码实现。从二元事件到计数、等待时间、概率建模,再到小样本处理,教你快速选择并验证合适分布,用对模型显著提升分析准确性。
曾被热捧的提示工程正逐渐退潮,本文揭示其局限性,并提出“上下文工程”新范式:通过结构化提示、精准上下文管理、工具调用与统一状态,构建可扩展、可恢复、生产级的智能体工作流,推动AI系统迈向工程化与可控化。
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
本文详解如何从零搭建RAG(检索增强生成)应用,跳过LangChain等框架,深入掌握文本解析、分块、向量检索、对话记忆、指代消解等核心技术,提升系统可控性与优化能力。
本文深入讲解机器人逆运动学中旋转计算的核心数学工具,包括矩阵指数与对数、SO(3)李群与李代数、流形和切空间等概念,帮助理解三维旋转误差计算原理,并提供基于矩阵指数的精确旋转更新方法及代码实现。
本文介绍了五种AI Agent结构化工作流模式,帮助解决传统提示词方式在生产环境中输出不稳定、质量不可控的问题。通过串行链式处理、智能路由、并行处理、编排器-工作器架构和评估器-优化器循环,可提升任务执行效率、资源利用和输出质量,适用于复杂、高要求的AI应用。
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
Hyperband是一种高效的超参数调优算法,通过逐次减半策略在探索与利用间取得平衡。它先为大量配置分配少量资源,快速淘汰表现差的模型,将剩余资源集中用于有潜力的配置,从而加快优化过程。相比贝叶斯优化、随机搜索和遗传算法,Hyperband在处理大规模搜索空间时效率更高,尤其适合资源有限的场景。文章通过LSTM模型预测股价的实验展示了其工作机制与实际效果。
本文介绍了一种改进的监督微调方法——Proximal Supervised Fine-Tuning (PSFT),旨在解决传统SFT易过拟合、泛化能力差及导致“熵坍塌”的问题。受PPO强化学习算法启发,PSFT通过引入参数更新的稳定性机制,防止模型在训练中变得过于确定,从而提升探索能力与后续强化学习阶段的表现。实验表明,PSFT在数学推理、模型对齐及泛化能力方面均优于传统SFT。
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
如今的量化交易已远超传统技术指标,迈向多智能体协作的新时代。本文介绍了一个基于 **LangGraph** 构建的多智能体交易系统,模拟真实投资机构的运作流程:数据分析师收集市场情报,研究员展开多空辩论,交易员制定策略,风险团队多角度评估,最终由投资组合经理做出决策。系统具备记忆学习能力,通过每次交易积累经验,持续优化决策质量。
DINOv3是Meta推出的自监督视觉模型,支持冻结主干、仅训练轻量任务头即可在分割、深度估计等任务上达到SOTA,极大降低训练成本。其密集特征质量优异,适用于遥感、工业检测等多领域,真正实现“一个模型走天下”。
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
本文探讨了多AI智能体协作中的关键问题——编排。文章指出,随着系统从单体模型向多智能体架构演进,如何设计智能体之间的通信协议、工作流程和决策机制,成为实现高效协作的核心。文章详细分析了五种主流的智能体编排模式:顺序编排、MapReduce、共识模式、分层编排和制作者-检查者模式,并分别介绍了它们的应用场景、优势与挑战。最后指出,尽管大模型如GPT-5提升了单体能力,但在复杂任务中,合理的智能体编排仍不可或缺。选择适合的编排方式,有助于在系统复杂度与实际效果之间取得平衡。
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
在AI智能体架构设计中,单智能体与多智能体路径之争愈演愈烈。实践表明,多智能体系统虽看似强大,却因协调复杂、容错差、信息丢失等问题而表现脆弱。相比之下,具备完整上下文的单智能体在一致性、稳定性与可维护性上更具优势。本文深入分析多智能体系统的失败案例与技术局限,提出优先发展高性能单智能体、聚焦上下文工程的实践路径,为AI系统设计提供清晰方向。
本文深入解析NVIDIA推出的NVFP4量化技术,探讨其在Blackwell GPU架构下的性能优势。通过对比主流4位量化方法,分析NVFP4在精度、内存和推理吞吐量方面的表现,结合LLM-Compressor与vLLM框架展示量化与部署实践,验证其在消费级与企业级应用中的高效性与实用性。
R-Zero框架实现了大语言模型在无外部训练数据条件下的自主进化与推理能力提升。
核密度估计(KDE)通过平滑处理解决直方图密度估计中的不连续问题,提供连续密度函数。其核心在于使用核函数对数据点进行加权,避免区间划分带来的信息丢失。带宽参数h影响估计效果,过小导致波动大,过大则过度平滑。常用核函数包括高斯核与Epanechnikov核,实际应用中可借助Statsmodels或Seaborn库快速实现。
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
HiRAG是一种分层检索增强生成系统,专为复杂知识图的多层推理设计。它通过构建从具体实体到抽象概念的多层次结构,提升知识推理深度与连贯性,有效减少大模型幻觉,适用于天体物理、理论物理等专业领域。
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
本文将深入分析这两种编码架构的技术原理、数学基础、实现流程以及各自的优势与局限性,并探讨混合架构的应用策略。
在机器学习应用中,数据集规模有限且类别分布不均(如医学影像中正类仅占5%)常导致模型偏向多数类,虽准确率高,但少数类识别效果差。本文探讨MixUp、CutMix和Focal Loss三种技术,分别从数据增强与损失函数角度提升小规模不平衡数据集上的模型表现。
本文系统构建了一个基于时序管理的智能体架构,旨在应对动态知识库(如财务报告、技术文档)在问答任务中的演进与不确定性。通过六层设计(语义分块、原子事实提取、实体解析、时序失效处理、知识图构建、优化知识库),实现了从原始文档到结构化、时间感知知识库的转化。该架构支持RAG和多智能体系统,提升了推理逻辑性与准确性,并通过LangGraph实现自动化工作流,强化了对持续更新信息的处理能力。
GPT-OSS通过MXFP4量化技术实现1200亿参数模型在单个80GB GPU上的高效运行,将权重压缩至每参数4.25位,大幅降低内存需求,同时保持高精度和竞争力的基准性能,为大规模模型部署提供了新思路。
本文介绍了使用四块Framework主板构建AI推理集群的过程,并基于AMD Ryzen AI Max+ 395处理器进行大语言模型推理性能测试,重点评估其并行推理能力及集群表现。
ReasonRank是一种创新段落重排系统,采用自动化数据合成与两阶段训练(监督微调+强化学习),在BRIGHT等测试中超越更大模型,显著提升信息检索中的推理能力。
本文将深入探讨MARS算法的核心原理,并详细阐述其在时间序列预测任务中的应用策略与技术实现。
Dots.ocr 是一款仅1.7B参数的视觉语言模型,正在重塑文档处理技术。它将布局检测、文本识别、阅读顺序理解和数学公式解析等任务统一于单一架构,突破传统OCR多模块流水线的限制。在多项基准测试中,其表现超越大参数模型,展现出“小而精”的实用价值,标志着OCR技术向高效、统一、灵活方向演进。
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
LangChain作为主流大语言模型应用框架,其高级组件常被忽视。本文详解10个高价值但低使用率的核心组件,如语义检索、多模板路由、智能查询转换等,结合技术原理与实践案例,助开发者构建更高效、智能、适应性强的AI系统,提升应用性能与业务价值。
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
本文将通过构建AI研究助手的完整案例,展示如何使用LangGraph框架实现这种架构转变,从理论基础到具体实现,帮助你掌握下一代AI系统的构建方法。
主成分分析(PCA)是一种经典的无监督降维方法,广泛应用于多变量异常值检测。它通过压缩数据维度并保留主要信息,提升检测效率,同时支持可视化与可解释性分析。本文系统讲解基于PCA的异常检测原理,重点介绍霍特林T²统计量与SPE/DmodX方法,并结合葡萄酒与学生成绩数据集,演示连续变量与分类变量的实际建模过程。通过Python实现,展示如何识别并可视化异常样本,提升异常检测的准确性与理解深度。