SMoA: 基于稀疏混合架构的大语言模型协同优化框架

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。

在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(Sparse Mixture-of-Agents, SMoA)框架,通过借鉴稀疏专家混合(Sparse Mixture-of-Experts, SMoE)的设计理念,有效解决了这些问题。

基础架构:MoA模型

在介绍SMoA之前,需要先了解基础的混合代理(Mixture-of-Agents, MoA)架构。在MoA中,系统包含l层,每层包含n个提议者(proposer)。其核心运算可以通过以下公式表示:

其中:

  • P_i,j 表示第i层的第j个提议者
  • x_i 是输入文本
  • ⊕ 表示聚合-综合提示操作
  • y_i 是第i层的输出

最终输出通过聚合器(Aggregator)生成:

SMoA架构解析

SMoA(Sparse Mixture-of-Agents)的架构设计融合了多层级代理交互和稀疏化处理,主要包含以下核心组件:

  • 输入层:接收初始提示(Prompt)
  • 处理层:包含多个并行的代理模块
  • 输出层:生成最终响应

1. 代理模块(Agent Module)

处理输入信息并生成候选响应

  • 每个模块都有独特的角色定义
  • 并行工作以提高效率
  • 通过角色扮演促进思维多样性

2. 评判代理(Judge)

每个处理层之间

  • 评估当前层所有代理的输出
  • 选择最优质的k个响应
  • 过滤低质量或重复信息

工作流程

 输入: n个代理响应
 过程: 质量评估与排序
 输出: k个最优响应(k < n)

3. 调节代理(Moderator)

处理层的最后

  • 监控整体进度
  • 评估响应质量和一致性
  • 决定是否继续迭代

决策依据

  • 响应质量评分
  • 代理间一致性程度
  • 迭代轮次计数

4. 信息流动路径

前向传递

  1. 输入提示进入第一层代理模块
  2. 并行代理生成候选响应
  3. 评判代理选择最优响应
  4. 调节代理评估是否继续

反馈机制

  1. 评判结果影响下一轮代理行为
  2. 调节决策控制迭代进程
  3. 动态调整处理深度

SMoA的技术创新

上图展示了传统MAD、MoA与SMoA的架构对比,我们来通过公式进行详细介绍

1. 响应选择机制

SMoA引入评判代理(Judge)来实现响应选择,其数学表达为:

这个机制通过选择最佳的k个响应显著减少了计算开销,其中k是控制网络稀疏度的参数。

2. 早停机制

调节代理(Moderator)的决策过程可以表示为:

这个布尔值决定是否继续迭代过程,有效降低了不必要的计算。

3. 角色扮演机制

角色分配过程可以表达为:

其中:

  • D 是数据集描述
  • T 是任务需求
  • r_i 是分配给每个提议者的角色描述

这些数学公式清晰地展示了SMoA各个组件的工作机制,以及它们如何共同实现系统的稀疏化和效率提升。

实验评估与结果分析

评估框架

研究团队在三个主要维度进行了全面评估:

  1. Just-Eval对齐性评估- 评估指标:有用性、清晰度、事实性、深度、参与度、安全性- 使用GPT-4进行评分,满分5分- 涵盖多个知名数据集
  2. MMAU推理能力评估- 数学理解(Math)- 工具使用(Tool)- 代码竞赛(Code)- 使用准确率作为评估指标
  3. CEB公平性评估- 主要关注有害性和刻板印象- 分数越低表示性能越好

关键实验结果

  1. 对齐性能比较:性能提升 = (SMoA得分 - 基线得分) / 基线得分 * 100%- Qwen2-72B-Instruct: +1.9%- Qwen1.5-72B-Chat: +1.7%- Mixtral-8*22B: +3.6%
  2. 推理能力评估:平均得分 = (Math + Tool + Code) / 3- 基线模型:20.78分- SMoA提升:+18.2%- MoA提升:+24.9%
  3. 计算效率分析:效率比 = SMoA处理时间 / MoA处理时间显示SMoA平均可节省约40%的计算资源

创新贡献与未来方向

主要贡献

  1. 架构创新- 提出稀疏化的多代理框架- 引入评判和调节机制- 实现角色多样性
  2. 性能突破- 维持高性能的同时显著降低计算成本- 提高系统可扩展性- 增强思维多样性
  3. 实践价值- 为大规模部署提供可行方案- 降低运营成本- 提高系统效率

未来研究方向

  1. 网络结构优化- 探索更复杂的代理连接方式- 研究动态网络拓扑
  2. 激活策略改进- 开发更智能的代理选择机制- 优化早停判断标准
  3. 应用场景拓展- 探索在更多领域的应用- 研究特定任务的优化策略

这项研究不仅在理论上提供了创新的解决方案,也在实践中展示了显著的改进效果。通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。

论文地址:

https://avoid.overfit.cn/post/ace63f7d197a44d6b0ce7086d0e5ba15

目录
相关文章
|
30天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
675 243
|
23天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
59 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
2天前
|
消息中间件 监控 小程序
电竞陪玩系统架构优化设计,陪玩app如何提升系统稳定性,陪玩小程序平台的测试与监控
电竞陪玩系统架构涵盖前端(React/Vue)、后端(Spring Boot/php)、数据库(MySQL/MongoDB)、实时通信(WebSocket)及其他组件(Redis、RabbitMQ、Nginx)。通过模块化设计、微服务架构和云计算技术优化,提升系统性能与可靠性。同时,加强全面测试、实时监控及故障管理,确保系统稳定运行。
|
8天前
|
存储 弹性计算 架构师
老板点赞!技术人如何用架构优化打赢降本增效战?
大家好,我是小米,一个喜欢分享技术的小架构师。通过亲身经历,我将介绍如何通过架构优化帮助公司降本增效。两年前,我加入一家初创公司,面对成本高企的问题,通过弹性伸缩、微服务化和数据治理等手段,成功降低了40%的技术成本,提升了60%的系统响应速度。希望我的经验能给你启发!关注我的微信公众号“软件求生”,获取更多技术干货。
17 5
|
1月前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
58 4
【AI系统】计算图优化架构
|
2月前
|
人工智能 测试技术 计算机视觉
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
LongLLaVA是由香港中文大学推出的多模态大型语言模型,采用混合架构,结合Mamba和Transformer模块,旨在高效处理大量图像数据。该模型能够在单个A100 80GB GPU上处理多达1000张图像,通过2D池化技术压缩图像token,显著降低计算成本,同时保留关键的空间关系信息。LongLLaVA在视频理解、高分辨率图像分析和多模态代理等应用场景中展现出卓越的性能。
51 5
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
|
24天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
77 3
|
2月前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
|
2月前
|
弹性计算 运维 开发者
后端架构优化:微服务与容器化的协同进化
在现代软件开发中,后端架构的优化是提高系统性能和可维护性的关键。本文探讨了微服务架构与容器化技术如何相辅相成,共同推动后端系统的高效运行。通过分析两者的优势和挑战,我们提出了一系列最佳实践策略,旨在帮助开发者构建更加灵活、可扩展的后端服务。
|
2月前
|
消息中间件 运维 Cloud Native
云原生架构下的微服务优化策略####
本文深入探讨了云原生环境下微服务架构的优化路径,针对服务拆分、通信效率、资源管理及自动化运维等核心环节提出了具体的优化策略。通过案例分析与最佳实践分享,旨在为开发者提供一套系统性的解决方案,以应对日益复杂的业务需求和快速变化的技术挑战,助力企业在云端实现更高效、更稳定的服务部署与运营。 ####