暂时未有相关云产品技术能力~
暂无个人介绍
JavaScript 是前端应用主要语言,相较于其他平台编程语言,JS资源多数情况下要通过网络进行加载,那么代码的体积直接影响了页面加载执行时间。“无效的代码”的多寡直接影响到了我们的代码质量,所以度量代码的执行覆盖率是一项重要的优化前置工作。
单元测试是工程交付前质量保障的第一环,也无疑是软件工程质量保障的重要基石,有效的单元测试能够提前发现90%以上的代码Bug问题,同时也能防止代码的腐化,在工程重构演进时起到至关重要的作用。
AnalyticDB for PostgreSQL(以下简称ADB PG)是一款PB级的MPP架构云原生数据仓库。本文从ADB PG架构设计的角度出发,探讨Runtime Filter在ADB PG中的实现方案,并介绍了基于Bloom Filter的ADB PG Dynamic Join Filter功能技术细节。
在流量分析型产品的用户分析模块中,留存、互访、新老客构成等数据都是有效衡量用户粘性与促活召回的关键性指标;但是,我们发现在很多流量运营的业务场景中,留存分析建模都显著存在着设计和计算上的诸多问题。本文将针对用户留存建模实践进行讨论。
近年来,随着稀疏模型对算力日益增长的需求, CPU集群必须不断扩大集群规模来满足训练的时效需求,这同时也带来了不断上升的资源成本以及实验的调试成本。为了解决这一问题,阿里云机器学习PAI平台开源了稀疏模型高性能同步训练框架HybridBackend,使得在同成本下GPU集群训练吞吐较CPU集群提升至5倍,大幅降低调试成本。那么HybridBackend背后的技术框架如何设计?未来有哪些规划?本文将和大家一起来深入了解。
类似于“防御性驾驶”对驾驶安全的重要性,防御性编码目的概括起来就一条:将代码质量问题消灭于萌芽。要做到“防御性编码”,就要求我们充分认识到代码质量的严肃性,也就是“一旦你觉得这个地方可能出问题,那基本它就会(在某个时刻)出问题”。当然,实际情况比这个更严峻。由于大家的编码经验和风格差异,导致大家的意识边界是大小不一的,那些潜伏在意识边界之外的“危险”更加隐蔽和不可琢磨。在意识层面上,我们当然要摒弃“想当然”和“差不多”的思想,严肃评估这些问题发生的可能性,认真对待这些风险。但如若话题止步于此,那其实还是缺乏执行层面的指导意义的,激不起半点“涟漪”的。这个文章目的也更多是关注到“实操层面”的引导
动态模板技术方案将客户端研发链路实现了串联,通过完备的工具化支撑体系,让开发者可以高效完成组件由原始设计稿到可运行代码的最短通路,本文将对研发体系中涉及到的核心模块就行介绍,希望对技术社区及广大开发者有一定帮助。
异步任务是构建弹性、高可用,响应迅速应用的重要手段。本文将对异步任务的适用场景和收益进行介绍,并讨论典型异步任务系统的架构、功能和工程实践。
EasyNLP背后的技术框架如何设计?未来有哪些规划?今天一起来深入了解。
EasyCV是阿里巴巴开源的基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具。EasyCV在阿里巴巴集团内支撑了搜索、淘系、优酷、飞猪等多个BU业务,同时也在阿里云上服务了若干企业客户,通过平台化组件的形式,满足客户自定定制化模型、解决业务问题的需求。
阿里云EMR自2020年推出Remote Shuffle Service(RSS)以来,帮助了诸多客户解决Spark作业的性能、稳定性问题,并使得存算分离架构得以实施。为了更方便大家使用和扩展,RSS在2022年初开源,欢迎各路开发者共建。本文将介绍RSS最新的两个重要功能:支持Adaptive Query Execution(AQE),以及流控。
Proxyless Service Mesh 能力将跟随 Dubbo-go 下一版本发布,稳定的性能需要社区成员们共同的关注与建设。在此基础之上,我们还会进一步探索轻量级 sdk + sidecar的模型;探索基于第三方流量治理组件的金丝雀发布能力;探索基于 dubbo 服务框架的多语言 sevice mesh、与更丰富的 mesh 生态组件兼容。
阿里云Quick BI凭借灵活的公共云部署,私有化独立部署能力、无缝对接各类云上数据库和自建数据库、可视化搭建分析、高效数据处理能力与强大数据计算能力,使得在2022年持续入选Gartner ABI魔力象限报告。
作为长期奋战在一线的技术人,我深刻体会到几个思维能力对技术人成长的重要性,熟练运用这几种思维可以帮助我们快速的进入到新的领域,在分析、定位和解决问题上有很大帮助。作为长期奋战在一线的技术人,我深刻体会到几个思维能力对技术人成长的重要性,熟练运用这几种思维可以帮助我们快速的进入到新的领域,在分析、定位和解决问题上有很大帮助。
Redis是目前最受欢迎的kv类数据库,当然它的功能越来越多,早已不限定在kv场景,消息队列就是Redis中一个重要的功能。Redis从2010年发布1.0版本就具备一个消息队列的雏形,随着10多年的迭代,其消息队列的功能也越来越完善,作为一个全内存的消息队列,适合应用与要求高吞吐、低延时的场景。本文将来盘一下Redis消息队列功能的发展历程,历史版本有哪些不足,后续版本是如何来解决这些问题的。
脱胎于阿里巴巴内部,经过多年双 11 打磨,每年为公司节省数十亿的混部系统 Koordinator 今天宣布正式开源。通过开源,我们希望将更好的混部能力、调度能力开放到整个行业,帮助企业客户改进云原生工作负载运行的效率、稳定性和计算成本。
归因的方法有多种,这篇文章的重点是指标拆解,也是我们做业务分析时最常用到的方法。我们的目的是解放人力,将指标拆解实现自动化,一方面可以加快业务迭代速度,快速定位问题;另一方面可以对可能产生异动的维度进行全局量化,增强可比性,明确下一步的业务行动点的优先级。自动化异变归因的目的是为了尽快判断并抓住机遇,寻求以数据驱动作为灯塔指引业务航向。
在前端工程中,有时我们需要在浏览器编译并执行一些代码,这种需求常见于低代码场景中。例如我们在搭建时需自定义一部分代码,这些代码需要在渲染时执行。为了方便起见,我们写的代码一定是 ES6 语法,如果要在浏览器执行,那么就必须经过编译。下面是前端编译 JS 代码的一些实践。
NBF是阿里巴巴供应链中台的基础技术团队打造的一个技术PaaS平台,她提供了微服务FaaS框架,低代码平台和中台基础设施等一系列的PaaS产品,旨在帮助业务伙伴快速复用和扩展中台能力,提升研发效能和对外的商业化输出。事件中心就是NBF系列技术产品中的一员。本文首先介绍事件驱动架构的概念及适用场景,然后会介绍事件中心产品的设计和实现。
NoSQL泛指非关系型数据库,随着web2.0互联网的诞生,传统的关系型数据库很难对付web2.0大数据时代!尤其是超大规模的高并发的社区,暴露出来很多难以克服的问题,NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的。
本文以系统为中心, 结合日常工作和用例, 由浅入深地介绍了性能分析的一些方法和体会, 希望对想了解系统性能分析的同学有所帮助。
阿里巴巴云原生大数据运维平台 SREWorks,沉淀了团队近10年经过内部业务锤炼的 SRE 工程实践,今天正式对外开源,秉承“数据化、智能化”运维思想,帮助运维行业更多的从业者采用“数智”思想做好高效运维。
经历6年时间,在各团队的努力下,阿里巴巴集团大规模稀疏模型训练/预测引擎DeepRec正式对外开源,助力开发者提升稀疏模型训练性能和效果。
软件的复杂性,是一个很泛的概念。但是一直都是开发过程中的一个难题,本文旨在探讨如何去从容应对复杂性。
To B 业务的生命周期与迭代通常会持续多年,随着产品的迭代与演进,以接口调用为核心的前后端关系会变得非常复杂。在多年迭代后,接口的任何一处修改都可能给产品带来难以预计的问题。在这种情况下,构建更稳健的前端应用,保证前端在长期迭代下的稳健与可拓展性就变得非常重要。本文将重点介绍如何利用接口防腐策略避免或减少接口变更对前端的影响。
相较于大家熟练使用的 MVC 分层架构,领域驱动设计更适用于复杂业务系统和需要持续迭代的软件系统的架构模型。关于领域驱动设计的概念及优势,可以参考的文献非常多,大多数的同学都看过相关的书籍,所以本文不讨论领域驱动概念层面的东西,而是试图从编程实践的层面,对领域驱动开发做一些简单的介绍。
在Java程序开发中,命名和应用分层无疑是广大后端同胞的两大“痛点”,本文提供一种基于领域模型的轻量级应用分层结构设计,供大家参考。下面按分层结构、分层明细、调用关系、各层规范和通用代码工具展开介绍。
本文将介绍在 MDL 系统中常用的数据结构及含义,然后从实现角度讨论 MDL 的获取机制与死锁检测,最后分享在实践中如何监控 MDL 状态。
阅读、学习,让自己更加快乐,让自己有更多的可能性,让生命的意义有可能延展和突破。
EPL背后的技术框架是如何设计的?开发者可以怎么使用EPL?EPL未来有哪些规划?今天一起来深入了解。
并发问题是电商系统最常见的问题之一,例如库存超卖、抽奖多发、券多发放、积分多发少发等场景;之所以会出现上述问题,是因为存在多机器多请求同时对同一个共享资源进行修改,如果不加以限制,将导致数据错乱和数据不一致性;解决并发问题的方式有很多,例如:队列、异步、响应式、锁都可以;由于当前互联网都是分布式系统,因此本文只针对使用较为广泛的分布式锁的方式来进行叙述如何进行质量保障。
一个好的Error Message主要包含三个部分:Context: 什么导致了错误?发生错误的时候代码想做什么?The error itself: 到底是什么导致了失败?具体的原因和当时的数据是什么?Mitigation: 有什么解决方案来克服这个错误,也可以理解为 Solutions。听起来还是有点抽象,能否给点代码具体说明下?
经历近 3 年时间,在阿里集团及蚂蚁集团共建小组的努力下,OpenSumi 作为国内首个强定制性、高性能,兼容 VS Code 插件体系的 IDE 研发框架,今天正式对外开源。
访问者模式在设计模式中的知名度虽然不如单例模式,但也是少数几个大家都能叫得上名字的设计模式了。不过因为访问者模式的复杂性,人们很少在应用系统中使用,经过本文的探索,我们一定会产生新的认识,发现其更加灵活广泛的使用方式。
如何去建立一套 “高度自动化&体系化的知识管理系统,重构知识的供给模式”。是不是看不懂?而且有点冲?是不是谜语人附体?别急,本文作者将会做详细的说明。
Flutter 一码多端的特性,解放了端上同学的人力,带来了研发效率的提升。但随之而来的又在研发链路中发现了各种问题,例如研发环境搭建,双端工程环境,集成发布流程繁琐等等。为了深入了解开发同学们的痛点,作者团队内部发起了一份问卷调查。本文将基于问卷调查中指出的痛点,以及解决这些问题的时候面临的一些挑战进行探讨。
菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。
稳定性与高可用性是老生常谈的两个词。凭借经验和感受我们知道,提高系统的这两项指标,系统会更加健康,产品也会有更好的用户体验。但是如果要给稳定性和高可用性下一个定义该如何表述?稳定性和高可用性这二者又有何区别和联系?我认为首先要理解好这两个问题,才能够设定清晰的目标,系统地制定完整可行的方案。
新的时代,开源的发展越来越蓬勃,开源和云的关系越来越复杂,耦合度越来越高,云是开源软件允许的最佳环境之一,也为开源软件插上安全高效的腾飞引擎。本文试图从企业软件的历史,结合开源软件发展规律,介绍软件开发和交付方式的演进过程,分析常见的开源软件开发和使用误区,讨论开源软件的业务模式和生态,以及在云时代下,开源软件和云的结合与相互促进。
读 A Philosophy of Software Design 有感,软件设计与架构复杂度,你是战术龙卷风吗?
全球观众对观看北京冬奥会赛事的热情高涨,让赛事转播视频备受瞩目。通过浏览赛事亮点缩略图,观众可以在众多转播视频中快速找到自己感兴趣的内容。对于转播商来说,如何简单快速的对海量赛事直播视频做实时处理,在不同时间点上生成缩略图是一个难题。
本文会深入介绍PolarDB MySQL在并行查询这一企业级查询加速特性上做的技术探索、形态演进和相关组件的实现原理,所涉及功能随PolarDB MySQL 8.0.2版本上线。
最近部门在推质量标准化,通过质量标准化,推动质量内建,从而提高研发部门的交付质量,作者深度参与其中,并在推进过程中总结了一些经验以及思考,在此通过以下定义、共识、实践三个大方向和大家分享一下。
设计是在对需求的认知不完整的情况下,对被设计对象进行求解的一个过程。这就迫使我们需要一边认识被设计对象,一边进行求解。为了并行化地进行这一过程,也为了使得对被设计对象地认识有初步的研究工具和基础,我们总结出了一套利用分拆提供弱约束,并基于这种分拆,来并行进行不同组件之间的设计的流程。
对于开发人员来说,单元测试一定不会陌生,但在各种原因下会被忽视,尤其是在我接触到的项目中,提测阶段发现各种各样的问题,我觉得有必要聊一下单元测试。为了写而写的单元测试没什么价值,但一个好的单元测试带来的收益是非常客观的。问题是怎么去写好单元测试?怎么去驱动写好单元测试?
Redis 作为一种非常流行的内存数据库,通过将数据保存在内存中,Redis 得以拥有极高的读写性能。但是一旦进程退出,Redis 的数据就会全部丢失。 为了解决这个问题,Redis 提供了 RDB 和 AOF 两种持久化方案,将内存中的数据保存到磁盘中,避免数据丢失。本文将重点讨论AOF持久化方案,以及其存在的一些问题,并探讨在Redis 7.0 (已发布RC1) 中Multi Part AOF(下文简称为MP-AOF,本特性由阿里云数据库Tair团队贡献)设计和实现细节。
随着深度学习的不断发展,AI模型结构在快速演化,底层计算硬件技术更是层出不穷,对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将算力发挥出来,还要应对计算框架的持续迭代。深度编译器就成了应对以上问题广受关注的技术方向,让用户仅需专注于上层模型开发,降低手工优化性能的人力开发成本,进一步压榨硬件性能空间。阿里云机器学习PAI开源了业内较早投入实际业务应用的动态shape深度学习编译器 BladeDISC,本文将详解 BladeDISC的设计原理和应用。
在分布式场景下,微服务进程都是以容器的形式存在,在容器调度系统例如 k8s 的支持下运行,容器组 Pod 是 K8S 的最小资源单位。随着服务的迭代和更新,当新版本上线后,需要针对线上正在运行的服务进行替换,从而发布新版本。
在营销场景下,算法同学会对广告主提供个性化的营销工具,帮助广告主更好的精细化营销,在可控成本内实现更好的ROI提升。我们在这一段时间支持了多个实时业务场景,比如出价策略的实时化预估、关键词批量服务同步、实时特征等场景,了解到业务侧同学来说,针对ODPS场景来说大部分可以灵活使用,但对于Blink使用还有不足,我们这里针对场景积累了一些经验,希望对大家有一些帮助。
在本次评测中,Hologres是目前通过中国信通院大数据产品分布式分析型数据库大规模性能评测的规模最大的MPP数据仓库产品。通过该评测,证明了阿里云实时数仓Hologres能够作为数据仓库和大数据平台的基础设施,可以满足用户建设大规模数据仓库和数据平台的需求,具备支撑关键行业核心业务数据平台的能力。