暂时未有相关云产品技术能力~
暂无个人介绍
Kafka是由LinkIn开源的实时数据处理框架,目前已经更新到2.3版本。不同于一般的消息中间件,Kafka通过数据持久化和磁盘读写获得了极高的吞吐量,并可以不依赖Storm,SparkStreaming的流处理平台,自己进行实时的流处理。 Kakfa的Offset机制是其最核心机制之一,由于API对于部分功能的实现,我们有时并没有手动去设置Offset,那么Kafka到底有几个Offset呢?
我们都知道Kafka的吞吐量很大,但是Kafka究竟会不会丢失消息呢?又会不会重复消费消息呢? 有很多公司因为业务要求必须保证消息不丢失、不重复的到达,比如无人机实时监控系统,当无人机闯入机场区域,我们必须立刻报警,不允许消息丢失。而无人机离开禁飞区域后我们需要将及时报警解除。如果消息重复了呢,我们是否需要复杂的逻辑来自己处理消息重复的情况呢,这种情况恐怕相当复杂而难以处理。但是如果我们能保证消息exactly once,那么一切都容易得多。
大数据实时处理的王者-Flink
对于大数据集群来说,监控功能是非常必要的,通过日志判断故障低效,我们需要完整的指标来帮我们管理Kafka集群。本文讨论Kafka的监控以及一些常用的第三方监控工具。
简要回顾一下,上一篇我们介绍了Streaming,批量与流式计算,正确性与推理时间的工具,数据处理模式,事件事件与处理时间,窗口化。 在这篇文章中,我想进一步关注上次的数据处理模式,但更详细。 这里会用到一些Google Cloud Dataflow[1]的代码片段,这是谷歌的一个框架,类似于Spark Streaming或Storm。
分享一篇关于实时流式计算的经典文章,这篇文章名为Streaming 101: The world beyond batch 那么流计算如何超越批处理呢? 从这几个方面说明:实时流计算系统,数据处理模式,还有大数据的未来。
通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html 能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢? Kafka的基本原理,术语,版本等等都是怎么样的?到底什么是Kafka呢?
Kafka多线程Consumer
Kafka单线程Consumer及参数详解
本文将带您快速的入门Kafka,体验Kafka的基本功能。 安装环境为centos7 jdk1.8 参考官网:http://kafka.apache.org/quickstart
本文介绍Kafka的核心之Producer。
本文介绍Kafka的核心之Consumer。 了解了什么是kafka( https://www.cnblogs.com/tree1123/p/11226880.html)以后 学习Kafka核心之消费者,kafka的消费者经过几次版本变化,特别容易混乱,所以一定要搞清楚是哪个版本再研究。
实时流式计算,也就是RealTime,Streaming,Analyse,在不同的领域有不同的定义,这里我们说的是大数据领域的实时流式计算。 实时流式计算,或者是实时计算,流式计算,在大数据领域都是差不多的概念。那么,到底什么是实时流式计算呢?