Apache Paimon流式湖仓学习交流群成立

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Apache Paimon流式湖仓学习交流群成立

Apache Paimon是一个流式数据湖平台。致力于构建一个实时、高效的流式数据湖平台。这个项目采用了先进的流式计算技术,使企业能够实时处理和分析大量数据。Apache Paimon 的核心优势在于它对于大数据生态系统中流式处理的支持,尤其是在高并发和低延迟方面表现出色。

目前业界主流数据湖存储格式项目都是面向 Batch 场景设计的,在数据更新处理时效性上无法满足 Streaming Lakehouse 的需求,因此 Flink 社区在一年多前内部孵化了 Flink Table Store (简称 FTS )子项目,一个真正面向 Streaming 以及 Realtime 的数据湖存储项目。

为了让 Flink Table Store 能够有更大的发展空间和生态体系,Flink PMC 经过讨论决定将其捐赠 Apache 进行独立孵化。

2023年3月12日,FTS进入 Apache 软件基金会 (ASF) 的孵化器,改名为 Apache Paimon (incubating)。

第一个流式数据湖项目诞生,流式湖仓一体成为可能,一个真正意义上的批流一体技术可能就此出现,传统Kappa架构的实时数仓体系,也迎来了一次巨大变革。

其Github地址为:https://github.com/apache/incubator-paimon

官网地址为:https://paimon.apache.org/

目前Paimon在蓬勃发展中。

Paimon 创新的结合了 湖存储 + LSM + 列式格式 (ORC, Parquet),为湖存储带来大规模实时更新能力。

image.png

流式湖仓(Streaming Data Lakehouse)是一个结合了数据湖和数据仓库特点的新型数据存储和处理架构。它不仅支持海量数据存储,还提供了对实时数据流的处理能力,能够满足企业对数据即时分析和决策的需求。流式湖仓的出现,标志着数据处理从批处理向实时处理的转变。

目前,数据处理领域正在经历一场重大变革,流式湖仓被认为是未来的发展趋势。其原因在于:

  1. 实时数据处理需求日益增长:随着物联网和在线服务的发展,企业需要实时处理和分析数据以快速做出决策。
  2. 技术进步:流式处理技术的不断进步,使得处理大规模实时数据成为可能。
  3. 数据集成和治理:流式湖仓可以整合来自不同来源的数据,并提供更好的数据治理。

Apache Paimon 正是在这样的背景下应运而生。它通过提供一个高效、可伸缩、易于管理的平台,帮助企业把握实时数据处理的机遇。随着技术的不断发展和应用场景的拓展,Apache Paimon 及类似的流式湖仓解决方案将会在数据处理领域扮演越来越重要的角色。

鉴于此,大数据流动社群决定成立Apache Paimon流式湖仓学习交流社群,也希望更多对Apache Paimon感兴趣的同学加入进来。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
86 5
|
4月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
439 4
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
2月前
|
消息中间件 人工智能 监控
Paimon x StarRocks 助力喜马拉雅直播实时湖仓构建
本文由喜马拉雅直播业务与仓库建设负责人王琛撰写,介绍了喜马拉雅直播业务的数据仓库架构迭代升级。文章重点分享了基于 Flink + Paimon + StarRocks 实现实时湖仓的架构及其成效,通过分钟级别的收入监控、实时榜单生成、流量监测和盈亏预警,大幅提升了运营效率与决策质量,并为未来的业务扩展和 AI 项目打下坚实基础。
228 5
Paimon x StarRocks 助力喜马拉雅直播实时湖仓构建
|
3月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
128 1
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
4月前
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
452 7
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
|
5月前
|
存储 消息中间件 运维
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
招联内部已有 40+ 个项目使用 Apache Doris ,拥有超百台集群节点,个别集群峰值 QPS 可达 10w+ 。通过应用 Doris ,招联金融在多场景中均有显著的收益,比如标签关联计算效率相较之前有 6 倍的提升,同等规模数据存储成本节省超 2/3,真正实现了降本提效。
招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%
|
3月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
3月前
|
人工智能 分布式计算 数据管理
阿里云位居 IDC MarketScape 中国实时湖仓评估领导者类别
国际数据公司( IDC )首次发布了《IDC MarketScape: 中国实时湖仓市场 2024 年厂商评估》,阿里云在首次报告发布即位居领导者类别。

推荐镜像

更多