开发者社区> 大数据与机器学习> 开源大数据平台 E-MapReduce

开源大数据平台 E-MapReduce

关注

阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。

0
今日
1634
内容
13
活动
5421
关注

第一节课:走进开源大数据平台 EMR

本节主要介绍EMR产品历史、选择理由、产品形态介绍开营介绍:夏俊鸾,花名亦龙,阿里云智能资深技术专家讲师:王晓平,花名子关,阿里巴巴 EMR 产品专家

1195 0

利用持久内存提速Spark

主要探讨如何在Spark上使用持久内存这一新技术来进一步提速性能。具体会介绍基于Plasma的共享内存方案来提速SQL数据源访问的性能以及利用持久内存扩展Spark现有内存磁盘存储层级来提速RDD cache在迭代式计算中的效果。讲师介绍:纪琨尚,英特尔亚太研发有限公司大数据部门的软件工程师,专注于Spark计算框架上基于Optane PMEM的优化叶宇强,英特尔亚太研发有限公司大数据部门的资深软件工程师,专注于Spark计算框架上基于Optane PMEM的优化

1386 0

通过LLVM加速SparkSQL时间窗口计算

讲师介绍:王太泽第四范式特征工程数据库负责人曾在百度担任资深研发工程师一直致力于解决机器学习模型从离线到在线特征一致性问题和性能问题。议题简介为什么要优化spark时间窗口未加速前面临问题为什么要使用llvm加速而不是继续优化jvm codegen实现介绍-llvm 版本sql引擎设计如何与spark集成benchmark数据 vs spark3.0

1383 0

基于 Spark 打造高效云原生数据分析引擎

由阿里巴巴 EMR 团队提交的 TPC-DS 成绩在九月份的榜单中取得了排名第一的成绩。这个成绩背后离不开 EMR 团队对 Spark 执行引擎持续不断的优化。本次分享将选取一些有代表性的优化点,深入到技术细节做详细介绍,包括但不限于动态过滤、CBO增强、TopK排序等等。嘉宾介绍辛庸,阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。

1699 0

【Spark Relational Cache实现亚秒级响应的交互式分析】

2019杭州云栖大会大数据生态专场中的分享《Spark Relational Cache实现亚秒级响应的交互式分析》Apache Spark被广泛用于超大规模的数据分析处理,在交互式分析等时间敏感的场景中,超大规模数据量的处理时间可能无法满足用户快速响应的需求。通过数据的预组织和预计算,将频繁访问的数据和计算提前执行并保存在Relational Cache中,优化后续特定模式的查询,可以显著提高查询速度,实现亚秒级的响应。本议题主要介绍Spark Relational Cache的实现原理和使用场景。主讲人王道远(健身),阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。

1465 0

【EMR打造高效云原生数据分析引擎】

EMR-Jindo 是 EMR 推出的云原生 OLAP 引擎。凭借该引擎,EMR 成为第一个云上 TPC-DS 成绩提交者。经过持续不断地内核优化,目前基于最新 EMR-Jindo 引擎的 TPC-DS 成绩又有了大幅提高,达到了3615071,成本降低到 0.76 CNY。本次分享将介绍 EMR-Jindo 引擎背后的相关技术以及以 EMR-Jindo 为核心的云上大数据架构方案。主讲人辛现银(辛庸),阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。

1322 0

【助力云上开源生态 - 阿里云开源大数据平台的发展】

介绍阿里云上开源生态的发展,阿里云如何更好的支持和融合开源生态,以及未来的发展。主讲人夏立,花名雷飙,阿里巴巴计算平台EMR高级产品专家,2014年开始接触大数据,历经阿里内部的大数据发展,目前在阿里云上负责开源的大数据平台EMR产品,构建云上的开源生态。

1057 0

Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”

Lakehouse Meetup “整合Pulsar和Lakehouse数据:使用Connector将Pulsar Topic中的数据Sink到Lakehouse storage”张勇 StreamNative 高级工程师Apache Pulsar Committer

394 0

Lakehouse Meetup “基于数据湖格式构建数据湖仓架构”

Lakehouse Meetup “基于数据湖格式构建数据湖仓架构”毕岩 阿里巴巴技术专家

603 0

使用Databricks进行零售业需求预测的应用实践【Databricks 数据洞察公开课】

从零售业需求预测痛点、商店商品模型预测的实践演示介绍Databricks如何助力零售商进行需求、库存预测,实现成本把控和营收增长。讲师/嘉宾简介李锦桂--阿里云开源大数据平台开发工程师

564 0

企业级全托管 Spark 大数据分析平台及案例分析【Databricks 数据洞察公开课】

从产品介绍、功能、典型场景、应用案例、Demo演示等多方面入手,介绍如何基于Databricks 数据洞察——Apache Spark的全托管数据分析平台,满足数据湖分析、实时数仓、离线数仓、BI数据分析、AI机器学习等场景需求。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群讲师/嘉宾简介棕泽阿里云技术专家阿里云开源大数据生态企业研发负责人

661 0

E-MapReduce 极客挑战赛线上宣讲会

直播介绍:(建议600字以内)E-MapReduce 极客挑战赛线上宣讲会直播内容:1、大咖寄语2、赛事解读讲师简介EMR极客挑战赛官方

623 0

开源大数据社区 & 阿里云 E-MapReduce 系列直播 第12期

此次课程是继上一节“ Spark 大数据处理最佳实践 ” 课后,大数据最佳实践课程的第二课。主要讲一下 flink 流计算的最佳实践。讲师根据自己多年经验总结的方法论,从 flink 学习框架入手,配合一些非常落地的最佳实践,带你有章法的学习 flink ,摆脱技术小白称号!讲师简介简锋 阿里云 EMR 数据开发平台 负责人

904 0

第四节课:EMR 开通与演示

本节主要介绍开通EMR的环境准备、账号准备、付费情况、实操演示讲师:魏巍,花名念民,阿里巴巴 EMR 产品经理

938 0

OAP Spark 优化介绍: 通过索引和缓存优化交互式查询性能

讲师介绍:陈海锋,英特尔亚太研发有限公司大数据部门的高级软件架构师,开发经理,主要研究和关注基于Hadoop和Spark的大数据框架的分析和优化,Apache社区的长期贡献者。沈祥翔,英特尔亚太研发有限公司大数据部门的高级软件工程师,主要担任OAP项目的开发。分享介绍:简单介绍OAP的总体蓝图。同时详细介绍其中的一个具体优化,使用索引和缓存来解决交互式查询性能挑战。英特尔和社区合作,为Spark SQL实现了索引和数据源缓存,通过为关键查询列创建并存储完整的B +树索引,并使用智能的细粒度数据缓存策略,我们可以极大的提升基于Spark SQL的交互式查询的性能。

1404 0

JindoFS 存储策略和读写优化

本次分享主要介绍数据读写在计算存储分离的场景下所面临的常见问题以及相关的优化手段,并结合应用场景介绍对数据缓存加速的相关技术和策略。讲师介绍姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作

754 0

Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏

近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍:喻杉,Intel大数据分析团队机器学习工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发针对时间序列分析的自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。

1756 0

JindoFS Fuse 支持

本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。讲师介绍苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, Apache HDFS committer. 目前从事开源大数据存储和优化方面的工作。

1376 0

Office Depot利用Analytics Zoo构建智能推荐系统的实践分享

大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍讲师:黄凯Intel数据分析团队软件工程师。负责开发基于Apache Spark的深度学习框架,同时支持企业客户在大数据平台上构建端到端的深度学习应用。他是Analytics Zoo和BigDL的核心贡献者之一。

1501 0

实时数仓建设以及典型场景应用

本次分享会介绍实时数仓的思路以及一些实践,包括SparkStreaming SQL引擎,以及对Delta/Kudu/Druid/阿里云多种存储组件的深度整合;同时会在这个基础上介绍一些典型案例应用讲师介绍宋军,花名嵩林 阿里云EMR高级技术专家。从事Spark内核优化,对SparkCore/SprakSQL有深入了解,Spark Contributor

2381 0

(第二部分)从Python 到Java ,Pyboot加速大数据和AI的融合

Python 代表机器学习生态,而以 Hadoop/Spark 为核心的开源大数据则以 Java 为主。前者拥有数不清的算法库和程序,后者承载着海量数据和大量的企业应用。除了 SQL 这个标准方式和各种五花八门的协议接口,还有没有更高效的一手数据通道,将两个生态对接起来,乃至深度融合?Pyboot 是我们在这个方向上的探索。有兴趣的同学欢迎现场观摩演示和技术交流。嘉宾介绍郑锴,花名铁杰,阿里巴巴高级技术专家,Apache Hadoop PMC,Apache Kerby 创立者。深耕分布式系统开发和开源大数据多年,目前专注于在阿里云上提供更好用更有弹性的 Hadoop/Spark 大数据平台;孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作;

1642 1

Tablestore结合Spark的云上流批一体大数据架构

传统Lambda架构组件多运维复杂,如何使用一套存储和一套计算来实现流批架构充分享受技术红利?以Delta Lake为代表的新型数据湖方案越来越流行,传统的Lambda架构如何向数据湖架构进行扩展?以及结构化数据结合Delta Lake的最佳解决方案是什么。本次分享将会结合理论讲解和实际场景为您一一解答。讲师介绍王卓然, 花名琸然 阿里云存储服务技术专家

1743 0

使用分布式自动机器学习进行时间序列分析

对于时间序列预测搭建机器学习应用的过程非常繁琐且需要大量经验。为了提供一个简单易用的时间序列预测工具,我们将自动机器学习应用于时间序列预测,将特征生成,模型选择和超参数调优等过程实现自动化。我们的工具基于Ray(UC Berkeley RISELab开源的针对高级AI 应用的分布式框架,并作为Analytics zoo(由intel开源的统一的大数据分析和人工智能平台)的一部分功能提供给用户。嘉宾介绍喻杉,Intel大数据分析团队软件工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。

1772 0

【云上大数据的一种高性能数据湖存储方案】

大数据上云是业界普遍共识,存储和计算分离的趋势日益显著,如何为云上蓬勃发展的大数据处理和分析引擎提供坚实的存储基础?这个 session 会主要讨论 EMR 技术团队重磅推出的一种新型混合存储解决方案,该方案基于云平台和云存储,面向新的存储硬件和计算发展趋势,为 EMR 弹性计算量身打造,在成本,弹性和性能上追求极佳平衡。技术上是如何实现的?性能如何?覆盖了哪些典型场景,最佳实践是什么?敬请期待!主讲人殳鑫鑫(辰石),阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。徐铖, Intel大数据团队软件开发经理

1589 0

EMR StarRocks VS 开源版本功能差异介绍

EMR StarRocks 线上公开课 第2期直播亮点Serverless StarRocks 客户案例分享Serverless StarRocks VS 开源版本能力介绍讲师简介弘锐 - 阿里云 E-MapReduce 产品专家

526 0

EMR StarRocks 3.0:极速统一湖仓新范式平台

EMR StarRocks 线上公开课 第1期直播亮点统一极速湖仓架构的技术思考Serverless StarRocks 亮点及技术优势Serverless StarRocks 已落地案例分享Serverless StarRocks 持续演进与规划讲师简介弘锐 - 阿里云 E-MapReduce 产品专家

552 0

Delta Lake数据湖基础介绍(商业版)【Databricks 数据洞察公开课】

公开课第五讲:介绍 Lakehouse 搜索引擎的设计思想,探讨其如何使用缓存,辅助数据结构,存储格式,动态文件剪枝,以及 vectorized execution 达到优越的处理性能。加入技术交流群下期预告《如何快速搭建流批一体数据仓库》讲师/嘉宾简介:李洁杏 Databricks 资深软件工程师

1113 0

开源大数据社区 & 阿里云 E-MapReduce 系列直播 第10期

EMR on ACK是企业级半托管的开源大数据平台,为阿里云E-MapReduce(EMR)提供了一个部署选项,允许您在阿里云容器服务Kubernetes版 (ACK) 上运行开源大数据框架。Yarn on K8S方案帮助您平衡不同集群的资源使用,共享集群间计算资源,充分利用所有节点的计算资源,满足计算资源弹性调度,云上混合部署在线和离线任务的需求。本次直播将重点展开 Yarn on ACK 的弹性介绍。讲师简介霁谦 阿里云开源大数据平台 高级开发工程师

1399 56

第三节课:EMR 的存储解决方案

本节主要介绍EMR针对云上大数据的存储解决方案,如何为计算提供灵活高效的存储基础讲师:姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作

1040 0

EMR Spark-SQL性能极致优化揭秘 Native Codegen Framework

EMR团队探索并开发了SparkSQL Native Codegen框架,为SparkSQL换了引擎,新引擎带来最高4倍性能提升,为EMR再次获取世界第一立下汗马功劳,本次直播将详细介绍Native Codegen框架。讲师简介:周克勇,花名一锤,阿里巴巴计算平台事业部EMR团队技术专家,大数据领域技术爱好者,对Spark有浓厚兴趣和一定的了解,目前主要专注于EMR产品中开源计算引擎的优化工作。参考文章:EMR Spark-SQL性能极致优化揭秘 Native Codegen Frameworkhttps://developer.aliyun.com/article/765156?spm=a2c6h.12873581.0.dArticle765156.5f6f47b4Mj7VpM&groupCode=aliyunemr

2087 0

Spark on Kubernetes & YARN

以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利?Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。讲师介绍何剑,阿里巴巴高级技术专家,专注于Kubernetes容器云和大数据底层调度以及基础架构,负责阿里巴巴容器平台在线服务和离线计算任务混部。此前就职于Hortonworks, 是Hadoop 社区Committer和PMC成员

1321 53

【基于Spark与TensorFlow的机器学习实践】

Apache Spark是目前最火热的计算框架,而TensorFlow是目前最火热的机器学习框架,当他们2个碰撞到一起的时候,也会产生巨大的能量。本议题会介绍EMR和PAI在这个上面的实践。主讲人吴威(无谓), 阿里巴巴高级技术专家,2008年加入阿里巴巴集团,先后在B2B和阿里云工作,一直从事大数据和分布式计算相关研究,作为主要开发和运维人员经历了阿里内部大数据集群的上线和发展壮大,现在阿里云EMR团队,负责Spark、Hadoop等计算引擎研发。江宇,阿里云EMR技术专家。从事Hadoop内核开发,目前专注于机器学习、深度学习大数据平台的建设

2340 1
我要发布