开发者社区> 大数据与机器学习> 开源大数据平台 E-MapReduce

开源大数据平台 E-MapReduce

关注

阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。

0
今日
1635
内容
13
活动
5425
关注

使用 Databricks 进行营销效果归因分析的应用实践【Databricks 数据洞察公开课】

本次课程将介绍如何试用Databricks进行广告效果归因分析,完成一站式的部署机器学习,包括数据ETL、数据校验、模型训练/评测/应用等全流程。讲师/嘉宾简介冯加亮,阿里云开源大数据平台技术工程师

1011 1

使用Databricks进行零售业需求预测的应用实践【Databricks 数据洞察公开课】

从零售业需求预测痛点、商店商品模型预测的实践演示介绍Databricks如何助力零售商进行需求、库存预测,实现成本把控和营收增长。讲师/嘉宾简介李锦桂--阿里云开源大数据平台开发工程师

594 0

Delta Lake数据湖基础介绍(开源版)【Databricks 数据洞察公开课】

公开课第四讲:本期公开课针对社区版本Delta Lake提供的几大核心特性进行讲解,并通过示例演示如何使用这些特性。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群下期预告《Delta Lake数据湖基础介绍(商业版)》讲师/嘉宾简介筱龙阿里云开源大数据平台技术专家

1162 1

Delta Lake的演进历程和现状优势【Databricks 数据洞察公开课】

Delta Lake作为一个开源项目的演进路径和现状优势,以及怎样帮助在现有存储系统上构建Lakehouse架构。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群下期预告《深度解析数据湖存储方案Lakehouse架构》讲师/嘉宾简介筱龙阿里云开源大数据平台技术专家

578 0

开源大数据社区 & 阿里云 E-MapReduce 系列直播 第7期

云原生数据湖构建与分析最佳实践讲师花名健身--阿里巴巴计算平台事业部 EMR技术专家

810 0

第三节课:EMR 的存储解决方案

本节主要介绍EMR针对云上大数据的存储解决方案,如何为计算提供灵活高效的存储基础讲师:姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作

1075 0

第一节课:走进开源大数据平台 EMR

本节主要介绍EMR产品历史、选择理由、产品形态介绍开营介绍:夏俊鸾,花名亦龙,阿里云智能资深技术专家讲师:王晓平,花名子关,阿里巴巴 EMR 产品专家

1225 0

(第二部分)从Python 到Java ,Pyboot加速大数据和AI的融合

Python 代表机器学习生态,而以 Hadoop/Spark 为核心的开源大数据则以 Java 为主。前者拥有数不清的算法库和程序,后者承载着海量数据和大量的企业应用。除了 SQL 这个标准方式和各种五花八门的协议接口,还有没有更高效的一手数据通道,将两个生态对接起来,乃至深度融合?Pyboot 是我们在这个方向上的探索。有兴趣的同学欢迎现场观摩演示和技术交流。嘉宾介绍郑锴,花名铁杰,阿里巴巴高级技术专家,Apache Hadoop PMC,Apache Kerby 创立者。深耕分布式系统开发和开源大数据多年,目前专注于在阿里云上提供更好用更有弹性的 Hadoop/Spark 大数据平台;孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作;

1683 1

EMR StarRocks 3.0:极速统一湖仓新范式平台

EMR StarRocks 线上公开课 第1期直播亮点统一极速湖仓架构的技术思考Serverless StarRocks 亮点及技术优势Serverless StarRocks 已落地案例分享Serverless StarRocks 持续演进与规划讲师简介弘锐 - 阿里云 E-MapReduce 产品专家

573 0

开源大数据社区 & 阿里云 E-MapReduce 系列直播 第9期

EMR on ACK是企业级半托管的开源大数据平台,为阿里云E-MapReduce(EMR)提供了一个部署选项,允许您在阿里云容器服务Kubernetes版 (ACK) 上运行开源大数据框架。 目前支持Spark引擎的部署,结合自研的Remote shuffle service(RSS)服务组件,提供用户高稳定、高性价比、灵活的弹性计算服务。RSS解决了计算存储分离和混合架构下的shuffle稳定性和性能问题。本次直播将重点展开RSS的使用和性能展示。讲师介绍吴雪扬(枢木),阿里云高级开发工程师

2267 0

Apache Flink x Iceberg Meetup 上海站

问题与互动页面(戳我进入)4月17日,Apahce Flink 社区2021年的首场线下 Meetup 正式开启!本次Apahce Flink x Iceberg Meetup邀请了来自阿里巴巴、腾讯、Dell、汽车之家的四位技术专家,聚焦 Flink x Iceberg 数据湖应用主题,围绕湖仓一体架构实践、Iceberg和对象存储的数据湖构建方案、超大规模数据入湖实践以及数据入湖面临的挑战等全方位剖析数据湖生产应用难题!活动亮点:超多实用干货,从数据湖应用面临的挑战入手,解析数据湖架构升级、对象存储与 Iceberg 的数据湖生态以及百亿数据入湖实践,轻松 get 数据湖正确打开方式;活动形式多样化,线下线上同步开启,同城可参与线下 Meetup 面对面交流,异地也可在线观看直播,精彩内容不错过;丰富周边等你拿,报名参加就有机会获得超多 Flink 社区定制的精美周边!Meetup 技术交流群:(Apache Flink 社区)活动议程合作伙伴

7875 0

第四节课:EMR 开通与演示

本节主要介绍开通EMR的环境准备、账号准备、付费情况、实操演示讲师:魏巍,花名念民,阿里巴巴 EMR 产品经理

972 0

EMR Spark-SQL性能极致优化揭秘 Native Codegen Framework

EMR团队探索并开发了SparkSQL Native Codegen框架,为SparkSQL换了引擎,新引擎带来最高4倍性能提升,为EMR再次获取世界第一立下汗马功劳,本次直播将详细介绍Native Codegen框架。讲师简介:周克勇,花名一锤,阿里巴巴计算平台事业部EMR团队技术专家,大数据领域技术爱好者,对Spark有浓厚兴趣和一定的了解,目前主要专注于EMR产品中开源计算引擎的优化工作。参考文章:EMR Spark-SQL性能极致优化揭秘 Native Codegen Frameworkhttps://developer.aliyun.com/article/765156?spm=a2c6h.12873581.0.dArticle765156.5f6f47b4Mj7VpM&groupCode=aliyunemr

2108 0

通过LLVM加速SparkSQL时间窗口计算

讲师介绍:王太泽第四范式特征工程数据库负责人曾在百度担任资深研发工程师一直致力于解决机器学习模型从离线到在线特征一致性问题和性能问题。议题简介为什么要优化spark时间窗口未加速前面临问题为什么要使用llvm加速而不是继续优化jvm codegen实现介绍-llvm 版本sql引擎设计如何与spark集成benchmark数据 vs spark3.0

1410 0

JindoFS Fuse 支持

本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。讲师介绍苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, Apache HDFS committer. 目前从事开源大数据存储和优化方面的工作。

1399 0

大规模文件元数据下的耗时操作优化

本次直播主要介绍大数据生态中常见的元数据服务部署形态,并分析大规模文件元数据下在生产环境中可能遇到的问题,以及针对这些问题如何进行优化和调整。讲师介绍孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作。

1422 0

使用Apache SuperSet和EMR Spark打造交互式的数据探索平台

本次分享主要介绍如何结合Apache SuperSet和EMR Spark,利用EMR Spark提供的JindoCube高级特性在SuperSet进行秒级响应,交互式的可视化数据探索。讲师介绍李呈祥,花名司麟,阿里云智能EMR团队高级技术专家,Apache Hive Committer, Apache Flink Committer,目前主要专注于EMR产品中开源计算引擎的优化工作。

1590 0

基于 Spark 打造高效云原生数据分析引擎

由阿里巴巴 EMR 团队提交的 TPC-DS 成绩在九月份的榜单中取得了排名第一的成绩。这个成绩背后离不开 EMR 团队对 Spark 执行引擎持续不断的优化。本次分享将选取一些有代表性的优化点,深入到技术细节做详细介绍,包括但不限于动态过滤、CBO增强、TopK排序等等。嘉宾介绍辛庸,阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。

1740 0

Spark on Kubernetes & YARN

以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利?Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。讲师介绍何剑,阿里巴巴高级技术专家,专注于Kubernetes容器云和大数据底层调度以及基础架构,负责阿里巴巴容器平台在线服务和离线计算任务混部。此前就职于Hortonworks, 是Hadoop 社区Committer和PMC成员

1345 53

Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理

Tablestore是阿里云自研的云原生结构化大数据存储服务,本议题会详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。最新版本的Connector会随着EMR下个版本的SDK一起开源,场景环节会结合阿里内部的业务介绍用户如何结合Tablestore和Spark来实现实时数据处理。讲师介绍朱晓然 ,Tablestore存储服务技术专家

1025 0

EMR StarRocks VS 开源版本功能差异介绍

EMR StarRocks 线上公开课 第2期直播亮点Serverless StarRocks 客户案例分享Serverless StarRocks VS 开源版本能力介绍讲师简介弘锐 - 阿里云 E-MapReduce 产品专家

552 0

企业级全托管 Spark 大数据分析平台及案例分析【Databricks 数据洞察公开课】

从产品介绍、功能、典型场景、应用案例、Demo演示等多方面入手,介绍如何基于Databricks 数据洞察——Apache Spark的全托管数据分析平台,满足数据湖分析、实时数仓、离线数仓、BI数据分析、AI机器学习等场景需求。产品技术咨询https://survey.aliyun.com/apps/zhiliao/VArMPrZOR加入技术交流群讲师/嘉宾简介棕泽阿里云技术专家阿里云开源大数据生态企业研发负责人

688 0

E-MapReduce 极客挑战赛线上宣讲会

直播介绍:(建议600字以内)E-MapReduce 极客挑战赛线上宣讲会直播内容:1、大咖寄语2、赛事解读讲师简介EMR极客挑战赛官方

647 0

开源大数据社区 & 阿里云 E-MapReduce 系列直播 第11期

Spark 大家应该都很熟了,我们这次的 Spark 最佳实践课程不会生搬硬套去讲一些你能在网上找得到的东西。而是讲师基于自己多年的经验总结出来的一些关于Spark或者是大数据方面一些原则性的东西,一些非常落地的最佳实践,主要的目标是让你为摆脱Spark小白用户的称号。讲师简介简锋 阿里云 EMR 数据开发平台 负责人

953 0

数据湖JindoFS+OSS 实操干货36讲 第四课(7/8讲)

【第7/8讲 直播主题】1、Flink 高效 sink 写入 OSS2、Flume 高效写入 OSS【背景】为了让更多开发者了解并使用 JindoFS,由阿里云 JindoFS+OSS 团队打造的专业公开课【数据湖 JindoFS+OSS 实操干货36讲】会在每周二16:00准时开讲!从五大板块入手,玩转数据湖!讲师介绍重湖 - 阿里巴巴计算平台事业部 EMR 高级工程师焱冰 - 阿里巴巴计算平台事业部 EMR 技术专家

1048 0

《数据湖存储架构选型》

数据湖技术在大数据领域炙手可热,随着在云上的广泛部署和应用,其业务价值逐渐获得业界共识。传统的大数据平台如何基于数据湖架构进行平台升级,享受新一轮的技术发展红利?郑老师着重跟大家分享了数据湖架构和应用在存储上面临的主要挑战,以及方案选型和最佳实践。嘉宾简介:郑锴,花名铁杰,阿里巴巴高级技术专家,Apache Hadoop PMC。深耕分布式系统开发和开源大数据多年,目前专注于在阿里云上研发业界领先的 Hadoop/Spark 大数据平台和数据湖解决方案产品。

1027 0

Intel MLlib:构建平台优化的Spark机器学习

Intel MLlib是一个为Apache Spark MLlib优化的软件包。它在保持和Spark MLlib兼容的同时,在底层利用原生算法库来实现在CPU和GPU上的最优化算法,同时使用Collective Communication来实现效率更高的节点间通信。我们的初步结果表明,该软件包在最小化应用改动的基础上,可以极大地提升MLlib算法的性能。讲师介绍吴晓昶英特尔亚太研发有限公司大数据部门的高级软件工程师,主要研究方向为并行计算,大数据系统和机器学习,CPU和GPU的性能优化。目前关注Spark和机器学习的系统性能优化。

1318 0

半小时,将你的Spark SQL模型变为在线服务

SparkSQL在机器学习场景中应用模型从批量到实时面临的问题 - SparkSQL 转换成实时执行成本高 - 离线特征和在线特征保持一致困难 - 离线效果与在线效果差距大我们是如何解决这些问题 相对传统实现方式我们优势 SparkSQL实时上线demo讲师:王太泽 第四范式特征工程数据库负责人 曾在百度担任资深研发工程师 一直致力于解决机器学习模型从离线到在线特征一致性问题和性能问题。

1831 54

Spark on Zeppelin

Apache Zeppelin 是一个交互式的大数据开发Notebook,从一开始就是为Spark定制的。Zeppelin Notebook的开发环境与传统IDE开发环境相比有几大优势:不需要编译Jar,环境配置简单,交互式开发,数据结果可视化等等。本次直播将会介绍Spark on Zeppelin的一些基本使用方式以及应用场景。章剑锋(简锋),开源界老兵,Apache Member,曾就职于 Hortonworks,目前在阿里巴巴计算平台事业部任高级技术专家,并同时担任 Apache Tez、Livy 、Zeppelin 三个开源项目的 PMC ,以及 Apache Pig 的 Committer。

1457 0

Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏

近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍:喻杉,Intel大数据分析团队机器学习工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发针对时间序列分析的自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。

1785 0

实时数仓建设以及典型场景应用

本次分享会介绍实时数仓的思路以及一些实践,包括SparkStreaming SQL引擎,以及对Delta/Kudu/Druid/阿里云多种存储组件的深度整合;同时会在这个基础上介绍一些典型案例应用讲师介绍宋军,花名嵩林 阿里云EMR高级技术专家。从事Spark内核优化,对SparkCore/SprakSQL有深入了解,Spark Contributor

2413 0

是时候改变你数仓的增量同步方案了

本分享会先介绍传统数据增量同步方案,之后对比新方案(完全基于Spark无需额外组件),介绍新方案如何结合最新的数据湖(delta lake)实现,同时引入spark-binlog,极大的简化了数据增量的门槛和架构。如果时间允许,我们也会简单介绍开源项目spark-binlog,delta-plus等的内部设计是如何支持我们新的数据增量方案的。讲师介绍祝威廉,资深数据架构,11年研发经验。同时维护和开发多个开源项目。擅长大数据/AI领域的一些思路和工具。现专注于构建集大数据和机器学习于一体的综合性平台,降低AI落地成本相关工作上。

1708 0
我要发布