开源大数据平台 E-MapReduce
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。

物化视图在 SparkSQL 中的实践
物化视图作为一种预计算的优化方式,广泛应用于传统数据库中,如Oracle,MSSQL Server等。随着大数据技术的普及,各类数仓及查询引擎在业务中扮演着越来越重要的数据分析角色,而物化视图作为数据查询的加速器,将极大增强用户在数据分析工作中的使用体验。本文将基于 SparkSQL(2.4.4) + Hive (2.3.6), 介绍物化视图在SparkSQL中的实现及应用。

Spark + AI Summit 2020 中文议题有奖征集
北美 Spark + AI Summit 2020 盛会在即,Apache Spark 中国技术交流社区在此诚邀各位,代表国内开发者选择您最希望听到的主题,届时社区将联合国内顶尖技术专家一一展开中文形式分享。

5月14日Apache Spark中国社区技术直播【Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏】
近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。

Analytics Zoo上的分布式TensorFlow训练AI玩FIFA足球游戏
近年来,由于对通用人工智能研究的潜在价值,训练AI玩游戏一直是一个火热的研究领域。FIFA实时视频游戏场景复杂,需要结合图像,强化学习等多种不同的AI技术,同时也要求agents响应有实时性,因此是一个非常好的试验场,可以用来探索不同类型的AI技术。本次分享主要介绍我们在训练AI玩FIFA视频游戏方面的一些工作。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍:喻杉,Intel大数据分析团队机器学习工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发针对时间序列分析的自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。

EMR Spark-SQL性能极致优化揭秘 RuntimeFilter Plus
在 2019 年的打榜测试中,我们基于 Spark SQL Catalyst Optimizer 开发的 RuntimeFilter 优化 对于 10TB 数据 99 query 的整体性能达到 35% 左右的提升。

5月8日 JindoFS 系列直播 第五讲【JindoFS Fuse 支持】
本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。

JindoFS Fuse 支持
本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。讲师介绍苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, Apache HDFS committer. 目前从事开源大数据存储和优化方面的工作。

EMR Spark-SQL性能极致优化揭秘 概览篇
这次的优化里面,还有一个很好玩的优化,就是我们引入的 Native Runtime,如果说上述的优化器优化都是一些特殊 Case 的杀手锏,Native Runtime 就是一个广谱大杀器,根据我们后期统计,引入 Native Runtime,可以普适性的提高 SQL Query 15~20%的 E2E 耗时,这个在TPCDS Perf 里面也是一个很大的性能提升点。

4月29日Spark社区直播【用Analytics-Zoo实现基于深度学习的胸腔疾病AI诊疗辅助】
本次分享主要介绍如何利用Analytics Zoo和NIH胸部X光影像数据集,在Apache Spark集群上实现基于深度学习的胸腔疾病分类,为医生提供端到端的胸腔疾病AI诊疗辅助。

用Analytics-Zoo实现基于深度学习的胸腔疾病AI诊疗辅助
讲师介绍龚奇源博士,英特尔机器学习专家。从事多年数据隐私和机器学习研究,2017年加入英特尔,目前负责Analytics-Zoo中ClusterServing、Streaming、OpenVINO和推理优化等工作。直播简介:本次分享主要介绍如何利用Analytics Zoo和NIH胸部X光影像数据集,在Apache Spark集群上实现基于深度学习的胸腔疾病分类,为医生提供端到端的胸腔疾病AI诊疗辅助。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo

阿里云EMR计算速度提升2.2倍 连续两年打破大数据领域最难竞赛世界纪录!
4月26日,大数据领域权威竞赛TPC-DS公布了最新结果,阿里云作为全球唯一入选的云计算公司获得第一。值得一提的是,去年阿里云EMR首次打破该竞赛纪录,成为全球首个通过TPC认证的公共云产品。今年在这一基础上,EMR的计算速度提升了2.2倍,连续两年打破了这项大数据领域最难竞赛的世界纪录。

Delta Lake Presto Integration & Manifests 机制
Delta 0.5 已于上周发布,增加了不少新特性,这篇文章主要讲解其 Presto Integration 和 Manifests 机制。

Delta Lake 分区表覆盖写入操作
Delta Lake当前版本(0.5)只支持API操作的,但是实现 Insert SQL 语法也不难,需要注意的是 Delta Lake 中的分区表覆盖写入操作。

SparkSQL DatasourceV2 之 Multiple Catalog
SparkSQL DatasourceV2作为Spark2.3引入的特性,在Spark 3.0 preview(2019/12/23)版本中又有了新的改进以更好的支持各类数据源。本文将从catalog角度,介绍新的数据源如何和Spark DatasourceV2进行集成。

4月23日JindoFS系列直播【大规模文件元数据下的耗时操作优化】
本次直播主要介绍大数据生态中常见的元数据服务部署形态,并分析大规模文件元数据下在生产环境中可能遇到的问题,以及针对这些问题如何进行优化和调整。

大规模文件元数据下的耗时操作优化
本次直播主要介绍大数据生态中常见的元数据服务部署形态,并分析大规模文件元数据下在生产环境中可能遇到的问题,以及针对这些问题如何进行优化和调整。讲师介绍孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作。

Spark在云原生时代的发展
在ABC (AI, BigData, Cloud)时代,传统的大数据解决方案和厂商 (Cloudera, Hortonworks) 略显颓势,而云厂商 (AWS, Azure, GCP) 和云原生解决方案 (Databricks Cloud, Snowflake, ElasticSearch等) 则愈加迸发出活力。在这个云原生的时代拥抱云变成了不二之选,那么对于Spark[1]来说它是如何在云原生时代积极拥抱云的呢?

实战 | 利用Delta Lake使Spark SQL支持跨表CRUD操作
本文介绍eBay Carmel团队利用Delta Lake,使Spark SQL支持Teradata的Update/Delete语法。主要从源码角度介绍了CRUD操作的具体实现和优化,以及delta表的管理工作。希望对同业人员有所启发和帮助。

spark面试该准备点啥
大部分面试者被面试的spark问题估计都会集中于spark core,spark streaming和spark sql,至于mllib和graphx这些估计都是了解项,当然也要逐步去学习structured streaming。

4月9日JindoFS系列直播【存储计算分离场景的计算适应优化】
本次分享会介绍云上大数据处理的存储计算分离特征,分析传统大数据处理中数据本地化与存储计算分离场景的区别,以及在存储计算分离场景中阿里云EMR的相关优化。

存储计算分离场景的计算适应优化
讲师介绍王道远,花名健身,阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。直播简介:本次分享会介绍云上大数据处理的存储计算分离特征,分析传统大数据处理中数据本地化与存储计算分离场景的区别,以及在存储计算分离场景中阿里云EMR的相关优化。

深入剖析 Delta Lake:Schema Enforcement & Evolution
Schema 约束和 Schema 演变相互补益,合理地结合起来使用将能方便地管理好数据,避免脏数据侵染,保证数据的完整可靠。

E-MapReduce弹性低成本离线大数据分析
基于阿里云的E-MapReduce(EMR) 、对象存储OSS、日志服务SLS、抢占式ECS实例构建弹性、低成本的计算与存储分离架构的海量离线大数据分析日志分析系统。

MySQL:互联网公司常用分库分表方案汇总
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

3月26日Spark社区技术直播【Office Depot利用Analytics Zoo构建智能推荐系统的实践分享 】
大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。

Office Depot利用Analytics Zoo构建智能推荐系统的实践分享
大量实验结果表明深度学习能更好地帮助商家为用户个性化推荐感兴趣的商品。Office Depot将Analytics Zoo工具包引入到他们的推荐系统中,在Spark集群上分布式训练了各种推荐算法模型,实验结果相比于传统的推荐算法有了十分显著的提升,本次分享主要介绍Office Depot使用Analytics Zoo构建智能推荐系统的实践经验。有兴趣的同学,可以提前关注此开源项目:https://github.com/intel-analytics/analytics-zoo讲师介绍讲师:黄凯Intel数据分析团队软件工程师。负责开发基于Apache Spark的深度学习框架,同时支持企业客户在大数据平台上构建端到端的深度学习应用。他是Analytics Zoo和BigDL的核心贡献者之一。

通过Job Committer保证Mapreduce/Spark任务数据一致性
通过对象存储系统普遍提供的Multipart Upload功能,实现的No-Rename Committer在数据一致性和性能方面相对于FileOutputCommitter V1/V2版本均有较大提升,在使用MapRedcue和Spark写入数据到S3/Oss的场景中更加推荐使用。

不可不知的Spark调优点
在利用Spark处理数据时,如果数据量不大,那么Spark的默认配置基本就能满足实际的业务场景。但是当数据量大的时候,就需要做一定的参数配置调整和优化,以保证业务的安全、稳定的运行。并且在实际优化中,要考虑不同的场景,采取不同的优化策略。

3月19日JindoFS系列直播【关于 JindoFS 最新的 OTS 方案】
本次直播主要介绍JindoFS的元数据的后端演化。包括JindoFS的架构以及使用场景、JindoFS 元数据的不同的后端支持,以及JindoFS 在云上环境如何支持 OTS 作为元数据后端。

3月19日JindoFS系列直播【关于 JindoFS 最新的 OTS 方案】
本次直播主要介绍JindoFS的元数据的后端演化。包括JindoFS的架构以及使用场景、JindoFS 元数据的不同的后端支持,以及JindoFS 在云上环境如何支持 OTS 作为元数据后端。

关于 JindoFS 最新的 OTS 方案
本次直播主要介绍JindoFS的元数据的后端演化。包括JindoFS的架构以及使用场景、JindoFS 元数据的不同的后端支持,以及JindoFS 在云上环境如何支持 OTS 作为元数据后端。讲师介绍殳鑫鑫,花名辰石,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。

Spark 3.0 终于支持 event logs 滚动了
Spark 的 event log 为什么不可以提供类似功能呢?值得高兴的是,即将发布的 Spark 3.0 为我们带来了这个功能(具体参见 SPARK-28594)。当然,对待 Spark 的 event log 不能像其他普通应用程序的日志那样,简单切割,然后删除很早之前的日志,而需要保证 Spark 的历史服务器能够解析已经 Roll 出来的日志,并且在 Spark UI 中展示出来,以便我们进行一些查错、调优等。

Delta Lake,让你从复杂的Lambda架构中解放出来
Linux 基金会的 Delta Lake(Delta.io)是一个给数据湖提供可靠性的开源存储层软件。在 QCon 全球软件开发大会(上海站)2019 的演讲中,Databricks 公司的 Engineering Manager 李潇带我们了解了 Delta Lake 在实际生产中的应用与实践以及未来项目规划,本文便整理自此次演讲。

【译】Databricks使用Spark Streaming和Delta Lake对流式数据进行数据质量监控介绍
本文主要对Databricks如何使用Spark Streaming和Delta Lake对流式数据进行数据质量监控的方法和架构进行了介绍,本文探讨了一种数据管理架构,该架构可以在数据到达时,通过主动监控和分析来检测流式数据中损坏或不良的数据,并且不会造成瓶颈。
【译】Delta Lake 0.5.0介绍
本文主要对Delta Lake最新发布的0.5.0版本进行了介绍,介绍了如何使用Presto读取Delta表以及Delta Lake 0.5.0在并发性上的提升。

Delta Lake - 数据湖的数据可靠性
Delta Lake 是一个开源的存储层,为数据湖带来了可靠性。Delta Lake 提供了ACID事务、可伸缩的元数据处理以及统一的流和批数据处理。它运行在现有的数据湖之上,与 Apache Spark API完全兼容。

3月5日JindoFS系列直播【Hadoop Job committer 的演化和发展】
Job Committer是Mapreduce/Spark等分布式计算框架的重要组成部分,为分布式任务的写入提供一致性的保证,本次分享主要介绍Job Committer的演进历史,以及社区和EMR在S3/OSS等云存储上的最新进展。

Hadoop Job committer 的演化和发展
Job Committer是Mapreduce/Spark等分布式计算框架的重要组成部分,为分布式任务的写入提供一致性的保证,本次分享主要介绍Job Committer的演进历史,以及社区和EMR在S3/OSS等云存储上的最新进展。讲师介绍李呈祥,花名司麟 ,阿里云智能EMR团队高级技术专家,Apache Hive Committer, Apache Flink Committer,目前主要专注于EMR产品中开源计算引擎的优化工作。

3月5日JindoFS系列直播【Hadoop Job committer 的演化和发展】
Job Committer是Mapreduce/Spark等分布式计算框架的重要组成部分,为分布式任务的写入提供一致性的保证,本次分享主要介绍Job Committer的演进历史,以及社区和EMR在S3/OSS等云存储上的最新进展。

Apache iceberg:Netflix 数据仓库的基石
Apache Iceberg 是一种用于跟踪超大规模表的新格式,是专门为对象存储(如S3)而设计的。 本文将介绍为什么 Netflix 需要构建 Iceberg,Apache Iceberg 的高层次设计,并会介绍那些能够更好地解决查询性能问题的细节。