SAE 提供了一个开箱即用的 Serverless PaaS 平台,提供了微服务、监控等能力,帮助敦煌智旅很好地解决了发版困难、运维困难、弹性能力不足和资源利用率低等痛点问题。成功实现轻松应对 10 倍突增流量洪峰,运维效率大幅提升。
RocketMQ 早期批处理模型存在一定的约束条件,为进一步提升性能,RocketMQ 进行了索引构建流水线改造,同时 BatchCQ 模型和 AutoBatch 模型也优化了批处理流程,提供了更简便的使用体验,快点击本文查看详情及配置展示~
本文主要介绍基于 MaxCompute 的离线近实时一体化新架构如何来支持这些综合的业务场景,提供基于Delta Table的近实时增全量一体的数据存储和计算解决方案。
本⽂对 Prompt 的使用方式进行了简单介绍,让大家了解到 Prompt 对于 LLM 的重要性。并尝试在 Prompt 中结合用户 Geo IP 信息,实现 LLM 的个性化回复,提升问答的准确度。
从花果山的灵石出世,到取经路上的九九八十一难,再到大闹天宫的惊心动魄……这些耳熟能详的西游场景,如今都能通过 Flux 模型,以超乎想象的细节和真实感呈现在你眼前。本次实验在函数计算中内置的 flux.1-dev-fp8 大模型,搭配 Lora 模型,无需复杂的配置,一键部署,你就能成为这场视觉盛宴的创造者。
本文介绍了如何使用阿里云资源编排服务(ROS)的云开发套件(CDK)将2048小游戏部署到云端。ROS CDK允许使用编程语言定义和部署云资源,简化开发流程。ECS(弹性计算服务)提供灵活的计算资源,确保应用稳定运行。通过初始化工程项目、安装依赖、添加资源等步骤,可以轻松实现游戏的云端部署。文中详细描述了各步骤的操作方法及注意事项,帮助读者顺利完成部署。最后,通过简单命令即可删除资源栈,实现资源的高效管理。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
iLogtail 作为一款开创性的轻量级日志采集器,历经 13 载风雨,始终致力于高效地从多元化的数据源中萃取、处理可观测信息,并无缝传输至阿里云日志服务或各类日志分析平台。今年,适逢 iLogtail 开源两周年的里程碑时刻,我们将回顾 iLogtail 的技术演进之路,领略其不断突破边界、引领可观测采集未来的创新力量。