本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
MCP Specification 在 2025-03-26 发布了最新的版本,本文对主要的改动进行详细介绍和解释
通过重构核心类,将 `HashMap<Long, HashSet<String>>` 优化为 `Long2ObjectOpenHashMap<int[]>`,结合数据分布特征与紧凑存储,JVM 堆内存从 3.13GB 降至 211MB,降幅达 94%,验证了高效数据结构在海量场景下的巨大价值。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
资源编排ROS模块能够实现模板代码复用。支持输入输出、公共模块、版本管理、共享模块等功能。在使用场景上,除了对基础设施模块化外,还可作为配置、数据处理工具或资源包装器。
本文从统一工程交付的概念模型开始,介绍了如何将应用交付的模式显式地定义出来,并通过工具平台落地。
本文整理自阿里云高级专家喻良,在 Flink Forward Asia 2023 主会场的分享。
越来越多的产品选择使用短视频作为内容承载,通过对媒体素材进行简单的剪辑,即可进行使用和投放,本文基于智能媒体服务IMS,介绍短视频剪辑中的常用功能,通过对不同功能的组合,方便客户组装自己的剪辑场景,进行短视频批量合成。