在emotion2vec模型中,句子级别损失有三种计算方法,分别是单嵌入(Token Embedding)、块嵌入(Chunk Embedding)和全局嵌入(Global Embedding)。
单嵌入(Token Embedding):通过一个单一的嵌入来代表学生网络S编码的全局情绪信息。具体来说,就是将可学习的言语嵌入U中的N设置为1。
块嵌入(Chunk Embedding):使用多个嵌入来表征全局情绪信息。在这种情况下,可以在一个块内聚合更多的全局信息。
全局嵌入(Global Embedding):在全局嵌入的情况下,并不添加额外的言语令牌。我们使用学生网络S的帧级别输出嵌入的时间池化结果。
这些方法提供了不同的方式来集成和理解全局情感信息,为后续的情感识别任务奠定基础。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。