modelscope-funasr这个问题怎么解决?

modelscope-funasr这个问题怎么解决?环境安装:​
python==3.7.13​
torch==1.13.1+cu113​
funasr==1.0.15​
使用模型:​
https://www.modelscope.cn/models/damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary
参考示例:​
https://github.com/alibaba-damo-academy/FunASR/blob/5e7eb6f160c48861cbcd39825a0cb98f98538772/examples/industrial_data_pretraining/seaco_paraformer/finetune_from_local.sh
完整错误:​
Traceback (most recent call last):​
File "../../../funasr/bin/train.py", line 42, in main_hydra​
main(kwargs)​
File "../../../funasr/bin/train.py", line 192, in main​
trainer.run()​
File "/code/zhili_test/new/FunASR-main/funasr/train_utils/trainer.py", line 181, in run​
self._train_epoch(epoch)​
File "/code/zhili_test/new/FunASR-main/funasr/train_utils/trainer.py", line 245, in _train_epoch​
retval = self.model(
batch)​
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl​
return forward_call(input, **kwargs)​
File "/opt/conda/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 1040, in forward​
output = self._run_ddp_forward(
inputs, kwargs)​
File "/opt/conda/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 1000, in _run_ddp_forward​
return module_to_run(*inputs[0],
kwargs[0])​
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl​
return forward_call(input, *kwargs)​
File "/code/zhili_test/new/FunASR-main/funasr/models/seaco_paraformer/model.py", line 120, in forward​
assert text_lengths.dim() == 1, text_lengths.shape​
AssertionError: torch.Size([32, 1])

展开
收起
三分钟热度的鱼 2024-03-20 15:51:10 100 分享 版权
1 条回答
写回答
取消 提交回答
  • 阿里云大降价~

    根据您提供的错误信息,问题出现在funasr/models/seaco_paraformer/model.py的第120行。错误提示是AssertionError: torch.Size([32, 1]),意味着text_lengths的形状应该是一维的,但实际上是二维的。

    要解决这个问题,您可以尝试修改funasr/models/seaco_paraformer/model.py文件的第120行,将assert text_lengths.dim() == 1改为assert text_lengths.dim() == 2。这样,代码将接受二维的text_lengths输入。

    请注意,这只是一个临时解决方案,可能会影响到其他部分的功能。建议您在修改之前备份原始文件,并在修改后进行充分的测试以确保不会引入其他问题。

    2024-03-27 19:02:27
    赞同 展开评论

包含命名实体识别、文本分类、分词、关系抽取、问答、推理、文本摘要、情感分析、机器翻译等多个领域

热门讨论

热门文章

还有其他疑问?
咨询AI助理