Flink-conf.yaml怎么配置啊?

Flink-conf.yaml怎么配置啊?

展开
收起
真的很搞笑 2023-10-22 22:06:57 654 分享 版权
3 条回答
写回答
取消 提交回答
  • 面对过去,不要迷离;面对未来,不必彷徨;活在今天,你只要把自己完全展示给别人看。

    Flink-conf.yaml是Flink的配置文件,它定义了Flink运行时的配置参数。你可以通过修改这个文件来调整Flink的行为。
    Flink-conf.yaml文件通常位于Flink的安装目录下,例如:/usr/local/flink/conf/flink-conf.yaml。你可以通过编辑这个文件来配置Flink。
    以下是一些常用的配置参数:

    • taskmanager.memory.process.size:设置TaskManager进程的最大内存容量。建议根据TaskManager可以使用的可用内存大小和任务的内存需求进行调整。
    • taskmanager.memory.managed.size:设置TaskManager中使用由Flink管理的堆外内存的大小。建议为TaskManager最大内存容量的1/4或1/8。
    • jobmanager.rpc.address:设置JobManager的IP地址。
    • jobmanager.rpc.port:设置JobManager的RPC端口号。
    2023-10-23 13:43:42
    赞同 展开评论
  • Flink-conf.yaml是Flink的配置文件,用于配置Flink的各种参数。以下是一些常用的配置项:

    1. jobmanager.rpc.address: Flink JobManager的RPC地址,默认为localhost:6123。
    2. taskmanager.numberOfTaskSlots: TaskManager中可用的任务槽数量,默认为1。
    3. parallelism.default: 每个Job的并行度,默认为1。
    4. state.backend: 状态后端的类型,可以是MemoryStateBackend、FsStateBackend或RocksDBStateBackend等。
    5. execution.checkpointing.interval: Checkpoint的时间间隔,默认为1000毫秒。
    6. execution.checkpointing.timeout: Checkpoint的最长时间,默认为60000毫秒。
    7. execution.checkpointing.max-concurrent: 最大并发Checkpoint的数量,默认为1。
    8. execution.checkpointing.min-pause: Checkpoint之间的最小暂停时间,默认为500毫秒。
    9. execution.job-failure-rate-threshold: Job失败率阈值,当超过该阈值时,JobManager会尝试重启Job。默认为0.0f。
    10. resourcemanager.hostname: ResourceManager的主机名,默认为localhost。

    以上只是一些常用的配置项,具体配置需要根据实际情况进行调整。在修改完Flink-conf.yaml文件后,需要重启Flink集群才能生效。

    2023-10-23 11:05:03
    赞同 展开评论
  • Flink-conf.yaml配置文件如下,供参考。

    ################################################################################
    #  Licensed to the Apache Software Foundation (ASF) under one
    #  or more contributor license agreements.  See the NOTICE file
    #  distributed with this work for additional information
    #  regarding copyright ownership.  The ASF licenses this file
    #  to you under the Apache License, Version 2.0 (the
    #  "License"); you may not use this file except in compliance
    #  with the License.  You may obtain a copy of the License at
    #
    #      http://www.apache.org/licenses/LICENSE-2.0
    #
    #  Unless required by applicable law or agreed to in writing, software
    #  distributed under the License is distributed on an "AS IS" BASIS,
    #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    #  See the License for the specific language governing permissions and
    # limitations under the License.
    ################################################################################
    
    
    #==============================================================================
    # Common
    #==============================================================================
    
    # The external address of the host on which the JobManager runs and can be
    # reached by the TaskManagers and any clients which want to connect. This setting
    # is only used in Standalone mode and may be overwritten on the JobManager side
    # by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
    # In high availability mode, if you use the bin/start-cluster.sh script and setup
    # the conf/masters file, this will be taken care of automatically. Yarn/Mesos
    # automatically configure the host name based on the hostname of the node where the
    # JobManager runs.
    # JobManager 的IP地址
    jobmanager.rpc.address: localhost
    # The RPC port where the JobManager is reachable.
    # JobManager的端口号
    jobmanager.rpc.port: 6123
    # The heap size for the JobManager JVM
    # JobManager JVM heap的内存大小
    jobmanager.heap.size: 1024m
    # The heap size for the TaskManager JVM
    # TaskManager JVM Heap的内存大小
    taskmanager.heap.size: 1024m
    # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
    #每个TaskManager 提供的任务Slots数量大小
    taskmanager.numberOfTaskSlots: 1
    # The parallelism used for programs that did not specify and other parallelism.
    #程序默认并行计算的个数
    parallelism.default: 1
    
    # The default file system scheme and authority.
    # 
    # By default file paths without scheme are interpreted relative to the local
    # root file system 'file:///'. Use this to override the default and interpret
    # relative paths relative to a different file system,
    # for example 'hdfs://mynamenode:12345'
    # 文件系统来源
    # fs.default-scheme
    
    #==============================================================================
    # High Availability
    #==============================================================================
    
    # The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
    
    #可以选择none或者zookeeper
    # high-availability: zookeeper
    # The path where metadata for master recovery is persisted. While ZooKeeper stores
    # the small ground truth for checkpoint and leader election, this location stores
    # the larger objects, like persisted dataflow graphs.
    # Must be a durable file system that is accessible from all nodes
    # (like HDFS, S3, Ceph, nfs, ...) 
    #
    # 文件系统路径,让flink在高可用性设置中持久保存元数据
    # high-availability.storageDir: hdfs:///flink/ha/
    # The list of ZooKeeper quorum peers that coordinate the high-availability
    # setup. This must be a list of the form:
    # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
    
    # zookeeper集群中仲裁者的机器ip和port端口号
    # high-availability.zookeeper.quorum: localhost:2181
    
    
    # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
    # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
    # The default value is "open" and it can be changed to "creator" if ZK security is enabled
    #
    # 默认是open,如果zookeeper security启用了该值会更改creator
    # high-availability.zookeeper.client.acl: open
    
    #==============================================================================
    # Fault tolerance and checkpointing
    #==============================================================================
    
    # The backend that will be used to store operator state checkpoints if
    # checkpointing is enabled.
    #
    # Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
    # <class-name-of-factory>.
    # 用于存储和检查点状态
    # state.backend: filesystem
    
    # Directory for checkpoints filesystem, when using any of the default bundled
    # state backends.
    # 存储检查点的数据文件和元数据的默认目录
    # state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
    
    # Default target directory for savepoints, optional.
    # savepoints的默认目标目录(可选)
    # state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints
    
    # Flag to enable/disable incremental checkpoints for backends that
    # support incremental checkpoints (like the RocksDB state backend). 
    # 用于启用/禁止增量checkpoints的标志
    # state.backend.incremental: false
    
    # The failover strategy, i.e., how the job computation recovers from task failures.
    # Only restart tasks that may have been affected by the task failure, which typically includes
    # downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.
    # 故障转移策略
    jobmanager.execution.failover-strategy: region
    
    #==============================================================================
    # Rest & web frontend
    #==============================================================================
    
    # The port to which the REST client connects to. If rest.bind-port has
    # not been specified, then the server will bind to this port as well.
    #
    # client链接port
    #rest.port: 8081
    
    # The address to which the REST client will connect to
    # client 链接ip
    #rest.address: 0.0.0.0
    
    # Port range for the REST and web server to bind to.
    # server  绑定port
    #rest.bind-port: 8080-8090
    
    # The address that the REST & web server binds to
    # web 绑定ip
    #rest.bind-address: 0.0.0.0
    
    # Flag to specify whether job submission is enabled from the web-based
    # runtime monitor. Uncomment to disable.
    # 是否启动web提交
    #web.submit.enable: false
    
    #==============================================================================
    # Advanced
    #==============================================================================
    
    # Override the directories for temporary files. If not specified, the
    # system-specific Java temporary directory (java.io.tmpdir property) is taken.
    #
    # For framework setups on Yarn or Mesos, Flink will automatically pick up the
    # containers' temp directories without any need for configuration.
    #
    # Add a delimited list for multiple directories, using the system directory
    # delimiter (colon ':' on unix) or a comma, e.g.:
    #     /data1/tmp:/data2/tmp:/data3/tmp
    #
    # Note: Each directory entry is read from and written to by a different I/O
    # thread. You can include the same directory multiple times in order to create
    # multiple I/O threads against that directory. This is for example relevant for
    # high-throughput RAIDs.
    #
    # io.tmp.dirs: /tmp
    
    # Specify whether TaskManager's managed memory should be allocated when starting
    # up (true) or when memory is requested.
    #
    # We recommend to set this value to 'true' only in setups for pure batch
    # processing (DataSet API). Streaming setups currently do not use the TaskManager's
    # managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
    # while the 'memory' and 'filesystem' backends explicitly keep data as objects
    # to save on serialization cost.
    # 是否应在TaskManager启动时预先分配TaskManager管理的内存
    # taskmanager.memory.preallocate: false
    
    # The classloading resolve order. Possible values are 'child-first' (Flink's default)
    # and 'parent-first' (Java's default).
    #
    # Child first classloading allows users to use different dependency/library
    # versions in their application than those in the classpath. Switching back
    # to 'parent-first' may help with debugging dependency issues.
    # 类加载解析顺序,是先检查用户代码jar(child-first)还是应用程序类路径(parent-first)默认设置指示首先从用户用户代码jar加载类
    # classloader.resolve-order: child-first
    
    # The amount of memory going to the network stack. These numbers usually need 
    # no tuning. Adjusting them may be necessary in case of an "Insufficient number
    # of network buffers" error. The default min is 64MB, the default max is 1GB.
    # 用于网络缓冲区的JVM的分配。这决定了TaskManager可以同时用友多少流数据交换通道及通道缓冲的程度。
    # 如果作业被拒绝或者收到收到系统没有足够缓冲区的警告,请增加下面的最小值/最大值。
    # 另外注意 taskmanager.network.memory.min 和 taskmanager.network.memory.max 可能会被覆盖。
    # taskmanager.network.memory.fraction: 0.1
    # taskmanager.network.memory.min: 64mb
    # taskmanager.network.memory.max: 1gb
    
    #==============================================================================
    # Flink Cluster Security Configuration
    #==============================================================================
    
    # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
    # may be enabled in four steps:
    # 1. configure the local krb5.conf file
    # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
    # 3. make the credentials available to various JAAS login contexts
    # 4. configure the connector to use JAAS/SASL
    
    # The below configure how Kerberos credentials are provided. A keytab will be used instead of
    # a ticket cache if the keytab path and principal are set.
    # 是否从Kerberos ticket缓存中读取
    # security.kerberos.login.use-ticket-cache: true
    # 包含用户凭据的Kerberos秘钥表文件的绝对路径
    # security.kerberos.login.keytab: /path/to/kerberos/keytab
    # 与keytab关联的Kerberos主体名称
    # security.kerberos.login.principal: flink-user
    
    # The configuration below defines which JAAS login contexts
    # 以逗号分隔的登录上下文列表,用于提供Kerberos凭据(例如Client,KafkaClient使用凭证进行zookeeper身份验证kafka身份验证)
    # security.kerberos.login.contexts: Client,KafkaClient
    
    #==============================================================================
    # ZK Security Configuration
    #==============================================================================
    
    # Below configurations are applicable if ZK ensemble is configured for security
    
    # Override below configuration to provide custom ZK service name if configured
    # 覆盖一下配置以提供自定义的zk服务名称
    # zookeeper.sasl.service-name: zookeeper
    
    # The configuration below must match one of the values set in "security.kerberos.login.contexts"
    # 该配置必须匹配security.kerberos.login.contexts中的列表(含有一个)
    # zookeeper.sasl.login-context-name: Client
    
    #==============================================================================
    # HistoryServer
    #==============================================================================
    
    # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
    # 可以通过 bin/historyserver.sh (start|stop) 命令启动和关闭 HistoryServer
    #
    # Directory to upload completed jobs to. Add this directory to the list of
    # monitored directories of the HistoryServer as well (see below).
    # 将已完成的作业上传到的目录
    #jobmanager.archive.fs.dir: hdfs:///completed-jobs/
    
    # The address under which the web-based HistoryServer listens.
    # 基于web的historyserver的地址
    #historyserver.web.address: 0.0.0.0
    
    # The port under which the web-based HistoryServer listens.
    # 基于web的historyweb的端口
    #historyserver.web.port: 8082
    
    # Comma separated list of directories to monitor for completed jobs.
    # 以逗号分隔的目录列表,用于监视已完成的作业
    #historyserver.archive.fs.dir: hdfs:///completed-jobs/
    
    # Interval in milliseconds for refreshing the monitored directories.
    # 刷新受监控的目录的事件间隔(以毫秒为单位)
    #historyserver.archive.fs.refresh-interval: 10000
    
    2023-10-23 08:04:07
    赞同 展开评论

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

还有其他疑问?
咨询AI助理