开发者社区 > 大数据与机器学习 > 实时计算 Flink > 正文

什么是数据易用性?

已解决

什么是数据易用性?

展开
收起
游客lmkkns5ck6auu 2022-08-31 11:06:05 469 0
1 条回答
写回答
取消 提交回答
  • 推荐回答

    早期的实时计算模型都是基于 Java 等高级语言进行开发。在 Spark Dataframe 以及 Flink SQL 出现之后,开发人员可以通过 SQL 来开发实时计算模型。随着分布式体系以及数据中台的发展,很多实时计算模型在处理业务逻辑过程中,需要访问外部联机接口。工行将调用的 HTTP、Dubbo、Redis 等外部接口,抽象成一张张外部表。直接通过一句 SQL 就能将 Kafka 中的流表与 Dubbo 的维表关联,然后将结果送到 HTTP 接口,大幅提升开发效率。在业务研发方面,通过借鉴业界 DataOps 的理念,工行打造了一条集开发、测试、版本制作及发布于一体的研发流水线。相比于早期大数据工程师基于 UltraEdit 开发的模型,这种可视化 IDE 的开发效率至少提升 10 倍以上。

    在生产运维方面,工行为运维人员提供多个用于展示平台健康状态的仪表盘。同时,并通过机器学习和专家规则相结合的方式,实现了面向多类场景的故障根因自动分析的能力,降低运维门槛。对于开发人员来说, 他们更关心作业中断后运维平台能否帮助分析问题,所以在作业中断时,为开发人员提供问题诊断能力,95% 以上的常见问题都可以自动完成分析。 在 BI 平台方面,工行面向业务人员提供了自助数据分析探索的能力。主要解决用数最后一公里的问题。分析 结果提供了多样化的展示仪表盘,不但支持基于拖拉拽的多维分析,而且支持数据下钻挖掘等功能。

    以上内容摘自《Apache Flink 案例集(2022版)》电子书,点击https://developer.aliyun.com/ebook/download/7718 可下载完整版

    2022-08-31 13:11:04
    赞同 展开评论 打赏

实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。

热门讨论

热门文章

相关电子书

更多
如何保证移动应用的稳定性 立即下载
HTAP能力持续增强 立即下载
云平台性能优化 立即下载