用户在网站中的访问行为路径,用户路径的分析模型可以将用户行为进行可视化展示。因此通常用户通过渠道来到。网站后会有不同的行为,他们一般会从落地页开始进行分流,会访问不同的页面,并在不同的页面结束对网站的访问。显然, 用户行为序列分布是没规律的,而对于虚假流量,虽然通过某些方式完成点击,但也是预先设定,有迹可循的。后面的TextCNN和BiLSTM模型解决的就是行为序列异常的作弊,有相应的作弊case,用户基本只访问homepage和detail,没有访问其他页面。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。