一、指代不同
1、偏最小二乘法:够在自变量存在严重多重相关性的条件下进行回归建模;允许在样本点个数少于变量个数的条件下进行回归建模。
2、最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
二、特点不同
1、偏最小二乘法:在计算方差和协方差时,求和号前面的系数有两种取法:当样本点集合是随机抽取得到时,应该取1/(n-1);如果不是随机抽取的,这个系数可取1/n。
2、最小二乘法:可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
三、用法不同
1、偏最小二乘法:在自变量的简单相关系数矩阵中,有某些自变量的相关系数值较大。回归系数的代数符号与专业知识或一般经验相反;或者,它同该自变量与y的简单相关系数符号相反。对重要自变量的回归系数进行t检验,其结果不显著。
2、最小二乘法:如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。