开发者社区> 问答> 正文

参数估计都有些什么分类啊?

已解决

参数估计都有些什么分类啊?

展开
收起
游客a6dwcf3rbwut2 2022-04-01 18:00:20 859 0
1 条回答
写回答
取消 提交回答
  • 推荐回答

    点估计:点估计(point estimation)是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。

    区间估计:区间估计(interval estimation)是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家 J.奈曼创立了一种严格的区间估计理论。

    递推参数估计:还有一种递推参数估计。为了减少计算量,便于在线估计参数,产生了许多递推算法。一般是用递推算法估计动态系统的参数。方法是:利用时刻t上的参数估计 、存储向量xt与时刻t+1上的输入和输出数据ut+1和yt+1,计算新的参数值。每一步的计算时间比解一个线性代数方程组要少得多。

    2022-04-01 18:02:31
    赞同 展开评论 打赏
问答地址:
问答排行榜
最热
最新

相关电子书

更多
纯干货|机器学习中梯度下降法的分类及对比分析 立即下载
纯干货 | 机器学习中梯度下降法的分类及对比分析 立即下载
概率图模型 立即下载