Spark Streaming中的JobGenerator的作用是什么?
JobGenerator会每隔我们定义的batch时间间隔,就会去ReceiverTracker中获取经过这个batch时间间隔内的数据信息blocks,将这些block聚合成一个batch,然后这个batch会被创建为一个RDD。
这样每隔一个batch时间间隔,都会将在这个时间间隔内接收的数据形成一个RDD,这样就会产生一个RDD序列,每个RDD代表数据流中一个时间间隔内的数据。正是这个RDD序列,形成SparkStreaming应用的输入DStream。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。