Spark早期的shuffle过程存在的问题是什么?
1) map任务的中间结果首先存入内存,然后才写入磁盘。这对于内存的开销很大,当一个节点上map任务的输出结果集很大时,很容易导致内存紧张,进而发生内存溢出(out of memory , OOM);
2) 每个map任务都会输出R(reduce任务数量)个bucket。假如M等于1000,R也等于1000,那么共计生成100万个bucket,在bucket本身不大,但是shuffle很频繁的情况下,磁盘I/O将称为性能瓶颈。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。