机器学习有许多算法,分别按照两个标准对常用的机器学习算法进行划分:第一个标准是算法的学习方式,第二个标准是算法的相似性。
在机器学习领域,通常将算法按照学习方式进行分类,这样可以在建模和算法选择的时候根据输入数据的类型来选择最合适的算法以获得最好的结果。按学习方式可分为监督学习、无监督学习、半监督学习和强化学习。
根据算法的功能和形式的相似性,我们可以把算法分类,比如分为基于树的算法、基于神经网络的算法等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。我们尽可能把常用的算法按照最容易理解的方式进行分类。
资料来源:《Python机器学习》,文章链接:https://developer.aliyun.com/article/727175
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。