我有一个看起来像这样的数据框:
'id': ["1", "2", "1", "3", "3", "4"],
'date': ["2017", "2011", "2019", "2013", "2017", "2018"],
'code': ["CB25", "CD15", "CZ10", None, None, "AZ51"],
'col_example': ["22", None, "22", "55", "55", "121"],
'comments': ["bonjour", "bonjour", "bonjour", "hola", "Hello", None]
结果:
id date code col_example .... comments
0 1 2019 CB25/CZ10 22 .... bonjour (and not bonjour // bonjour)
1 2 2011 CD15 None .... bonjour
2 3 2017 None 55 .... hola // Hello
3 4 2018 AZ51 121 .... None
我想保留一个ID
如果两个ID相同,我想:
如果comments = None和= str:仅保留不为None的注释(示例:id = 1,保留注释“ hello”)。如果两个注释= str:将两个注释连接为“ //”(示例id = 3,注释=“ hola //您好”)
目前,我尝试使用sort_value和drop_duplicate没有成功
谢谢
问题来源:stackoverflow
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
我相信您需要按列注释添加DataFrame.dropna,然后使用join和GroupBy.last添加GroupBy.agg,最后添加DataFrame.mask将空字符串替换为None行:
df1 = (df.groupby('id')
.agg({'date': 'last',
'comments': lambda x: ' // '.join(x.dropna())})
.replace({'comments': {'': None}})
.reset_index())
print (df1)
id date comments
0 1 2019 bonjour
1 2 2011 bonjour
2 3 2017 hola // Hello
3 4 2018 None
编辑:为避免删除所有列,必须将它们全部聚合,您可以为聚合动态创建字典,例如:
df = pd.DataFrame({'id': ["1", "2", "1", "3", "3", "4"],
'date': ["2017", "2011", "2019", "2013", "2017", "2018"],
'code': ["CB25", "CD15", "CB25", None, None, "AZ51"],
'col_example': ["22", None, "22", "55", "55", "121"],
'comments': [None, "bonjour", "bonjour", "hola", "Hello", None]})
print (df)
id date code col_example comments
0 1 2017 CB25 22 None
1 2 2011 CD15 None bonjour
2 1 2019 CB25 22 bonjour
3 3 2013 None 55 hola
4 3 2017 None 55 Hello
5 4 2018 AZ51 121 None
d = dict.fromkeys(df.columns.difference(['id','comments']), 'last')
d['comments'] = lambda x: ' // '.join(x.dropna())
print (d)
{'code': 'last', 'col_example': 'last', 'date': 'last',
'comments': <function <lambda> at 0x000000000ECA99D8>}
df1 = (df.groupby('id')
.agg(d)
.replace({'comments': {'': None}})
.reset_index())
print (df1)
id code col_example date comments
0 1 CB25 22 2019 bonjour
1 2 CD15 None 2011 bonjour
2 3 None 55 2017 hola // Hello
3 4 AZ51 121 2018 None
回答来源:stackoverflow