开发者社区> 问答> 正文

数独益智游戏,内含正方形数字

两天前,我遇到了一个数独问题,尝试使用Python 3解决。我被告知确实存在一个解决方案,但是我不确定是否存在多个解决方案。

问题如下:数独的9x9网格完全为空。但是,它确实包含彩色框,并且在这些框内,数字的总和必须为平方数。除此之外,还适用普通的数独规则。

这里的问题不是*解决数独难题,而是生成可行的难题,满足彩色盒子的规则。

我的策略

使用numpy数组,我将网格划分为81个索引,可以将其重新排列为9x9网格。

import numpy as np
print(np.array([i for i in range(81)]).reshape((9, 9)))

->
[[ 0  1  2  3  4  5  6  7  8]
 [ 9 10 11 12 13 14 15 16 17]
 [18 19 20 21 22 23 24 25 26]
 [27 28 29 30 31 32 33 34 35]
 [36 37 38 39 40 41 42 43 44]
 [45 46 47 48 49 50 51 52 53]
 [54 55 56 57 58 59 60 61 62]
 [63 64 65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78 79 80]]

这是包含所有索引块的列表。

boxes = [[44, 43, 42, 53],[46, 47, 38],[61, 60],[69, 70],[71, 62],
         [0, 9, 18],[1, 10, 11, 20],[2, 3, 12],[4, 13, 14],[5, 6],
         [7, 8],[17, 26, 35],[21, 22, 23],[15, 16, 24, 25, 34],
         [27, 36, 37],[19, 28, 29],[45, 54],[55, 56],[63, 64, 65],
         [72, 73, 74],[57, 66, 75 ],[58, 59, 67, 68],[76, 77],[78, 79, 80]]

从图片或上方的阵列中可以看到,这些盒子被排列成2、3、4或5(8个二进制,12个3个,3个4个,1个river)的块。我还注意到,一个盒子可以包含多个数字而不会破坏数独的任何规则,但是一个数字只能是2个。根据这些信息,最大的平方可能是36,因为9 + 9 + 8 + 7 + 6 = 39,因此,一个块的总和不可能达到49。要找出列表的总和是否包含一个平方数,我已完成以下功能:

def isSquare(array):
    if np.sum(array) in [i\*2 for i in range(1,7)]:
        return True
    else:
        return False

为了找出列表中是否包含正确数量的重复项,即,多个重复项只有一个数字,我做了以下函数:

def twice(array):
    counter = [0]\*
    for i in range(len(array)):
        counter[array[i]-1]+=1
        if 3 in counter:
            return False
    if counter.count(2)>1:
        return False
    return True

Now, given the digits 1-9, there are limited ways solutions to a list, if the list has to sum into a square number. Using itertools , I could find the solutions, dividing them into an array, where index 0 contains blocks of twos, index 1 contains blocks of threes, and so on.

from itertools combinations_with_replacement
solutions = []
for k in range(2, 6):
    solutions.append([list(i) for i in combinations_with_replacement(np.arange(1, 10), k) if 
    isSquare(i) and twice(i)])

However, any permutation of these lists are viable solutions to the "square problem". Using itertools again, the total amount of possible boxes (without the sudoku rules) sums to 8782.

from itertools import permutations

def find_squares():
    solutions = []
    for k in range(2, 6):
        solutions.append([list(i) for i in combinations_with_replacement(np.arange(1, 10), k) if 
            isSquare(i) and twice(i)])
    s = []
    for item in solutions:
        d=[]
        for arr in item:
            for k in permutations(arr):
                d.append(list(k))
        s.append(d)
    return s # 4-dimensional array, max 2 of each

solutions = find_squares()

total = sum([len(i) for i in solutions])
print(total)
-> 8782

This should be enough to implement functionality that decides if a board is legal, that is, rows, columns and boxes only contains one each of the digits 1-9. My implementation:

def legal_row(arr):
    for k in range(len(arr)):
        values = []
        for i in range(len(arr[k])):
            if (arr[k][i] != 0):
                if (arr[k][i] in values):
                    return False
                else:
                    values.append(arr[k][i])
    return True

def legal_column(arr):
    return legal_row(np.array(arr, dtype=int).T)


def legal_box(arr):
    return legal_row(arr.reshape(3,3,3,3).swapaxes(1,2).reshape(9,9))


def legal(arr):
    return (legal_row(arr) and legal_column(arr) and legal_box(arr))

Difficulties with runtime

A straightforward approach would be to check every single combination of every single block. I have dones this, and produced several viable problems, however the complexity of my algorithm makes this take far too long time.

Instead, I tried to randomize some of the properties: The order of the blocks and the order of the solutions. Using this, I limited the number of tries, and checked if a solution was viable:

attempts = 1000
correct = 0
possibleBoards = []
for i in range(1, attempts+1):
    board = np.zeros((9, 9), dtype=int)
    score = 0
    shapes = boxes
    np.random.shuffle(shapes)
    for block in shapes:
        new_board = board
        new_1d = board.reshape(81)
        all_sols = solutions[len(block)-2]
        np.random.shuffle(all_sols)
        for sols in all_sols:
            #print(len(sols))
            new_1d[block] = sols
            new_board = new_1d.reshape((9, 9))
            if legal(new_board):
                board = new_board
                score+=1
                break
    confirm = board.reshape(81)
    #solve(board) # Using my solve function, not important here
    # Note that without it, correct would always be 0 as the middle of the puzzle has no boxes
    confirm = board.reshape(81)
    if (i%1000==0 or i==1):
        print("Attempt",i)
    if 0 not in confirm:
        correct+=1
        print(correct)
        possibleBoards.append(board)

In the code above, the variable score refers to how many blocks the algorithm could find during an attempt. The variable correct refers to how many of the generated sudoku boards could be completed. If you are interested in how well it did in 700 attempts, here are some stats (This is a historgram, the x-axis represents the scores, and the y-axis represents how many of each score was present during these 700 attempts).

What I need help with

我正在努力寻找一种可行的方法来找到该问题的解决方案,该方法实际上可以在有限的时间内运行。我将不胜感激有关使我的某些代码更快或更佳的任何提示,对问题采用不同方法的任何想法,对问题的任何解决方案,或与该问题相关的一些关于Python / Numpy的有用提示。

问题来源:stackoverflow

展开
收起
is大龙 2020-03-23 20:21:05 653 0
1 条回答
写回答
取消 提交回答
  • 这是我要使用SMT求解器的地方。它们比人们认为的要强大得多。如果您能想到的最佳算法本质上是暴力破解,请尝试使用求解器。只需列出您的约束并运行它,即可在几秒钟内给出您唯一的答案:

    278195436
    695743128
    134628975
    549812763
    386457291
    721369854
    913286547
    862574319
    457931682
    

    使用的代码(以及坐标的参考图片):

    import z3
    
    letters = "ABCDEFGHI"
    numbers = "123456789"
    boxes = """
    A1 A2 A3
    B1 B2 C2 C3
    C1 D1 D2
    E1 E2 F2
    F1 G1
    H1 I1
    G2 H2 G3 H3 H4
    I2 I3 I4
    B3 B4 C4
    D3 E3 F3
    A4 A5 B5
    C5 B6 C6
    G5 H5 I5 I6
    A6 A7
    B7 C7
    D7 D8 D9
    E7 E8 F7 F8
    G7 H7
    I7 I8
    A8 B8 C8
    G8 H8
    A9 B9 C9
    E9 F9
    G9 H9 I9
    """
    positions = [letter + number
                 for letter in letters
                 for number in numbers]
    S = {pos: z3.Int(pos) for pos in positions}
    
    solver = z3.Solver()
    
    # Every symbol must be a number from 1-9.
    for symbol in S.values():
        solver.add(z3.Or([symbol == i for i in range(1, 10)]))
    
    # Every row value must be unique.
    for row in numbers:
        solver.add(z3.Distinct([S[col + row] for col in letters]))
    
    # Every column value must be unique.
    for col in letters:
        solver.add(z3.Distinct([S[col + row] for row in numbers]))
    
    # Every block must contain every value.
    for i in range(3):
        for j in range(3):
            solver.add(z3.Distinct([S[letters[m + i * 3] + numbers[n + j * 3]]
                                    for m in range(3)
                                    for n in range(3)]))
    
    # Colored boxes.
    for box in boxes.split("\n"):
        box = box.strip()
        if not box: continue
        boxsum = z3.Sum([S[pos] for pos in box.split()])
        solver.add(z3.Or([boxsum == 1, boxsum == 4, boxsum == 9,
                          boxsum == 16, boxsum == 25, boxsum == 36]))
    
    # Print solutions.
    while solver.check() == z3.sat:
        model = solver.model()
        for row in numbers:
            print("".join(model.evaluate(S[col+row]).as_string()
                        for col in letters))
        print()
    
        # Prevent next solution from being equivalent.
        solver.add(z3.Or([S[col+row] != model.evaluate(S[col+row])
                          for col in letters
                          for row in numbers]))
    

    回答来源:stackoverflow

    2020-03-24 09:50:20
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
数据如何让运动更好玩 立即下载
数据如何让运动更好玩有趣 立即下载
分身大师那些事儿 立即下载